
PHYSICAL REVIEW E OCTOBER 1999VOLUME 60, NUMBER 4
Electrostatics of a modulated membrane with specific adsorption

O. Pecina and J. P. Badiali
Laboratoire Structure et Re´activité des Syste`mes Interfaciaux, Universite´ Pierre et Marie Curie,

4 Place Jussieu, F-75230 Paris Cedex 05, France
~Received 1 December 1998!

We present a simple model for the electrostatic properties of a modulated membrane separating two different
electrolyte solutions. The model is based on an extension to linear Gouy-Chapman theory. Starting from a
Hamiltonian which contains a singular part for the surface contributions, we obtain within the mean-field
approach a set of equations which allows us to study the equilibrium between the diffuse and singular parts of
the charge carriers. It is shown that the interface modulation leads to a higher potential of zero charge
compared to the flat system. The value of this effect depends on the interplay between the height and the
characteristic length of the interface modulation and the Debye lengths on both sides, even if the adsoprtion
occurs only on one side of the interface. In the latter case, the side where no adsorption occurs locally exihibits
a diffuse charge distribution, which averages to zero, but which makes a contribution to the overall potential
drop across the interface. We also calculate the electrostatic contribution to the elastic bending modulus of the
membrane and show that specific adsorption of ions can destabilize the flat interface.
@S1063-651X~99!09510-0#

PACS number~s!: 68.10.2m, 82.65.2i, 68.35.Ct
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I. INTRODUCTION

An interface consisting of a thin boundary which sep
rates two different electrolytes is of great importance, sinc
is found in various fields such as colloid chemistry and ph
ics, membrane science, electrochemistry, and biology,
example in cell membranes. It is therefore of fundamen
interest to understand the electrostatic properties of suc
system. If one considers a planar interface geometry, one
make use of electric double layer theories, which are fami
from theoretical electrochemistry and which go far beyo
the mean-field level of the widely used Gouy-Chapm
theory, taking into account many microscopic details of
system@1#. However, most of these interfaces are not fl
but roughened due to thermal fluctuations of the interf
position. It is therefore useful to investigate the effects int
duced by a modulationh(x) of the interface position on the
electrostatic properties within a simple model, in order
understand some basic physical aspects. With basic phy
aspects we mean the interplay between the two De
lengths of the system and the two new length scales in
duced by the surface modulation, namely the height of
modulation and its characteristic length. In addition, there
another length chracterizing the specific adsorption.

If the size of the thermal fluctuations is mainly dete
mined by the surface tension of the system, the modula
of the interface can usually be described within the theory
capillary waves@2,3#. Under neglect of gravitational effects
the mean square height fluctuation of the interface positio
Fourier space is given by

^uĥ~q…u2&5
kBT

gq2
, ~1!

whereĥ(q) is the Fourier transform of the function descri
ing the surface modulation,q is the wave vector, andg is the
PRE 601063-651X/99/60~4!/4431~13!/$15.00
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surface tension. If, however, the system has a very low s
face tension—which is often the case for biologic
membranes—the fluctuations are very large and contro
by the elastic bending moduluskc of the interface. For this
type of fluctuations the mean height fluctuation is given
@4#

^uĥ~q!u2&5
kBT

kcq
4

. ~2!

There is a large amount of literature dealing with the el
trostatic contribution to the elastic bending modulus~and
also the Gaussian modulus in the case of an interface m
lated in two dimensions!. Since kc has the dimensions o
energy, the electrostatic contribution to it must have the fo
f e(DV)2/k, f s0

2/ek3, or a mixed formf s0DV/k2 for a po-
tential dropDV across the interface or a surface charges0,
respectively. Here,f is a dimensionless constant which
determined by the boundary condition. The exact value
the sign off are important, sincekc enters for example ex
ponentially into the persistence length@5#, which is a mea-
sure for the distance over which the normals of the surf
become decorrelated, and it can be measured with great
cision ~for a review see Ref.@6#!. Expansion of the linear or
nonlinear Poisson-Boltzmann equation in terms of the cur
ture for highly symmetric interface geometries@7–9# and a
sinusoidal modulation of a planar membrane@10#, or expan-
sion of the linearized Poisson-Boltzmann equation in
case of arbitrary geometries@11–14# allows the incorpora-
tion of the electrostatic effects into the curvature free ener
A peculiarity of highly symmetric interfaces such as plan
cylinders, and spheres is that a uniform normal componen
the dielectric displacement at the interface position cor
sponds also to a constant potential at the interface. Fo
arbitrary interface geometry no such correspondence ex
This has an important consequence for the boundary co
4431 © 1999 The American Physical Society
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4432 PRE 60O. PECINA AND J. P. BADIALI
tion of an elctrically transparent membrane between t
electrolyte solutions, since in this case neither the dielec
displacement nor the potential at the interface is uniform
our opinion, this aspect has been overlooked so far in
above cited literature.

In a recent publication we derived an extension to
linear Gouy-Chapman theory, in order to describe the pr
erties of an modulated liquid-liquid interface between tw
immiscible electrolyte solutions@15#. The same approach i
also valid for the description of an idealized infinitesim
thin and electrically transparent membrane which separ
two different electrolyte solutions. In this work, we will ex
tend our recent approach, in order to include specific ads
tion of ions at the interface. The adsorption or nonelect
static interaction of ionic species with a membrane is
example an important preceding step in the delivery
drugs. We will start from an effective Hamiltonian for th
system, which consists of a regular and a singular part.
mean-field approach, together with the appropriate bound
condition for the dielectric displacement at the interfa
leads to a set of self-consistent equations for the poten
and the ionic distribution, which can be solved analytica
within the linear Poisson-Boltzmann approximation. Th
will be shown in Sec. II for the general case of a modula
interface. In Sec. III we describe in more detail the poten
profile and the charge distribution for the case of cation
sorption on one side of the interface, and in Sec. IV we t
to the appropriate electrostatic contribution to the ela
bending modulus for this system. Finally, we give a sh
summary in Sec. V.

II. THEORETICAL APPROACH

A. Mean-field approximation

Recently a field theoretic approach was used to desc
electrified interfaces@16,17#. Starting from an effective
Hamiltonian it was shown that within the mean-field a
proximation the Poisson-Boltzmann equation is the resul
the competition between the nonlocal electrostatic inter
tion and the entropy, which was described in terms of
ideal mixing entropy functional@16#. The effect of adsorp-
tion was studied by adding an adsorption potential, wh
was contracted to a delta function, and a squared grad
term of the total density to the Hamiltonian@17#. In this case
the mean-field minimization leads to a set of two coup
second-order differential equations, which can be solved a
lytically in the case of small potential drops across a
interface@18#. This Hamiltonian has the advantage that o
obtains a regular solution for the ionic densities, but from
mathematical point of view this approach would be very d
ficult for the application to a modulated interface, since
this case one has to apply a complicated boundary cond
for the dielectric displacement at the interface~see Sec. II B!.

Here, we will start from a different Hamiltonian, whic
contains a singular part for the description of the adsor
layer. This corresponds to the introduction of an inner lay
but since the structure of this inner layer is not known, it
contracted to a singular layer in such a way that it makes
contribution to the potential drop across the interface. All
influence of this singular layer on the regular part of t
system is taken into account by the boundary condition. T
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approach has the advantage that the resulting equation
fairly simple. It is similar to that of Binder@19# for the de-
scription of surface phase transitions. The important diff
ence, however, is that in our case the boundary conditio
not contained in the Hamiltonian itself, but is imposed
macroscopic electrostatics.

We can write the Hamiltonian for our system as a fun
tional of the bulk ~regular! ionic densitiesr6(r ) and the
surface~singular or adsorbed! ionic densitiesG6(R)

bH tot@r i
6~r !,G i

6~R!#5 (
i 51,2

b$Hi
bulk@r i

1~r !,r i
2~r !#

1Hi
surf@G i

1~R!,G i
2~R!#%, ~3!

whereb is 1/kBT, r5(x,y,z) is a point in the bulk of the
solution,R5„x,y,z5h(x,y)… is a point on the interface, an
i denotes the side of the interface. The modulation of
interface position is described by the functionh(x,y), and
i 51 for z.h(x,y) and i 52 for z,h(x,y). Furthermore,
we require the following condition for the surface modul
tion function:

E h~x,y!dxdy50. ~4!

If the spontaneous curvature of the interface is zero, this
always be achieved without loss of generality by a suita
choice of the midplane position. The bulk part of the Ham
tonian consists of the nonlocal Coulombic interaction and
local ideal entropy

bHi
bulk@r i

1~r !,r i
2~r !#5

1

2
beE @r i

1~r !2r i
2~r !#V~r !dr

1 (
j 56

E Fr i
j~r !S ln

r i
j~r !

r
21D Gdr ,

~5!

wheree is the elementary charge andr is a reference value
for the bulk system, which will be eliminated later. The p
tential V(r ) is the total potential of the system, and we c
write it in a general form as

V~r !5E M ~r,r 8!qtot~r 8!dr 8, ~6!

with

qtot~r !5e (
i 51,2

$r i
1~r !2r i

2~r !1@G i
1~R!2G i

2~R!#

3d„z2h~x,y!…%. ~7!

The nonlocal functionM (r,r 8) describes the Coulombic cou
pling between two charges at different locations. Due to
difference of the dielectric constants on both sides of
interfaceM (r,r 8) will have a complicated form. Note, how
ever, that the potential as given in Eq.~6! contains no image
terms, but these are also absent in the usual Gouy-Chap
theory. Likewise, the singular part of the total Hamiltonia
consists of the electrostatic interaction and a surface entr
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term. In addition, it contains also a nonelectrostatic poten
u, which represents the effect of the attractive short-ra
interaction

bHi
surf@G i

1~R!,G i
2~R!#

5
1

2
beE @G i

1~R!2G i
2~R!#V~R!dR

1 (
j 56

E H bui
jG i

j~R!1G i
j~R!S ln

G i
j~R!

G0,i
j

21D J dR.

~8!

Here,G0,i
j is the corresponding reference value for the s

face part of the system, which in general can be different
anions and cations. The nonelectrostatic potentialu has to be
understood as an effective potential, where solvation effe
are taken into account. Furthermore, we assume that this
tential depends on the nature of the ion. This may see
little artificial, since in the bulk of the solution we describe
symmetric electrolyte. In fact, the asymmetry of the elect
lyte in the bulk of the solution, which is caused by the d
ferent short-range interactions, can be taken into accoun
introducing a term of the following form into the Hami
tonian @16,17#:

bHi
as5E $ai

11@r i
1~r !#21ai

12r i
1~r !r i

2~r !

1ai
22@r i

2~r !#2%dr. ~9!

The coefficientsai would lead to a renormalization of th
inverse Debye length@16#, but we will ignore such a term
here for simplicity.

In the mean-field approximation the profiles can be cal
lated by the condition that they minimize the Hamiltonia
Due to the separation into a regular and a singular part
get

d

dr i
6~r !

HbHi
bulk@r i

1~r !,r i
2~r !#2m i

6E r i
6~r !dr J 50,

~10!

d

dG i
6~R!

HbHi
surf@G i

1~R!,G i
2~R!#2m i

6E G i
6~R!dRJ 50,

~11!

where the Lagrange multiplierm6 takes into account the
constraint of a fixed number of particles. From the minim
zation of the bulk part of the Hamiltonian@Eq. ~10!# one
gets, after elimination ofm6 by applying Eq.~10! at a posi-
tion far from the interface, the usual Boltzmann equations
the ionic densities

r i
6~r !5

rBi

2
exp$7be@V~r !2ci #%, ~12!

where rBi
is the total bulk density on sidei and ci is a

constant, which is usually set to zero on one side. With
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Poisson equation one obtains in the linear potential reg
the linear Poisson-Boltzmann equation

~D2k i
2!V~r !5ci . ~13!

For a 1-1 binary electrolyte the inverse Debye length isk i

5lDB
215AbrBi

e2/e i , where e i5esolv,ie0 is the solvent di-
electric constant.

The minimization of the surface part@Eq. ~11!# leads to
the following two equations on each side:

m i
656beV~R!1bui

61 ln
G i

6~R!

G0,i
6

. ~14!

If we apply Eq.~10! at the positionr5R we get

m i
656beV~R!1 ln

r i
6~R!

r
, ~15!

and subtract Eq.~15! from Eq. ~14! we obtain

bui
61 ln

G i
6~R!

Li
6r i

6~R!
50, ~16!

where we have introduced the lengthLi
65G0,i

6 /r. This
length can be interpreted as the thickness of the adso
layer, and it is an additional parameter in our model. The
equation can be rearranged into

G i
6~R!5Li

6r i
6~R!e2bui

6

. ~17!

This equation has the familiar form of the Henry law
adsorption, but in our model it has a different meaning, sin
r i

6(R) itself depends via the boundary condition for the p
tential onG i

6(R). In fact, in the linear potential region w
obtain a Langmuir-type adsorption isotherm, as will
shown in Sec. III. If we substitute the linear form of Eq.~12!
into Eq. ~17! we obtain the following relation between th
total surface charge densityqi

surf(R)5e@G i
1(R)2G i

2(R)#
and the total bulk charge density at the interfaceqi

bulk(R)
5e@r i

1(R)2r i
2(R)#:

qi
surf~R!5

1

2
$erBi@Li

1e2bui
1

2Li
2e2bui

2

#1qi
bulk~R!

3@Li
1e2bui

1

1Li
2e2bui

2

#%. ~18!

The second term of this equation depends via the Pois
equation on the potential, but the first term is independen

it. If Li
1e2bui

1

ÞLi
2e2bui

2

, this term gives rise to a potentia
of zero charge. Note that the surface charge densityqi

surf(R)
is not zero forui

650. This is due to fact that we divided ou
system from the beginning into a singular and a regular p
and the entropy term in the surface Hamiltonian@Eq. ~8!#
also makes a contribution to the free energy of the adsor
layer. Only in the limit ofui

6→1` the surface charge den
sity would be zero, since then the inner layer is destroye



lv
or
r-
e
ll
o
th
th
s

he
p
ti

ct
ec

e
-

er

s
n
rs
n

e
tro
ca

i
e
s-
Th
m
te
e-
na

r

a
nd-
ity
e
an-
on
rder

q.
c-

-
lar

a

k,
nts

f-

e

eter-

ua-

lving

ere
cat-

in
is

Eq.
he
ch

4434 PRE 60O. PECINA AND J. P. BADIALI
B. The boundary condition

In order to calculate the potential profile, we have to so
Eqs.~13! and~18! for a complicated boundary geometry. F
a simplification of the following calculation we restrict ou
selves to a two-dimensional system, that is, the surfac
modulated in only one spatial direction and is translationa
invariant along the orthogonal direction in the midplane
the surface. Note that a two-dimensional modulation of
surface can introduce important additional features due to
possible change of the topology of the surface. The inve
gation of these effects may be the topic of future work.

Far from the interface position the modulation of t
membrane has a negligible effect and we can assume a
nar equipotential line. Hence, the second-order differen
equation@Eq. ~13!# has to be solved with the following two
boundary conditions:

V~x,2`!5c2[DVPZC, V~x,`!5c1[0, ~19!

where the potential of zero charge~PZC! DVPZC is the total
potential drop across the interface, caused by the nonele
static adsorption of ions. However, from macroscopic el
trostatics it is known that the dielectric displacementDi
5e i¹V(x,y) at the electrically transparent boundary b
tween two different dielectric media has to fulfill the follow
ing condition@20#:

n~x!@D1„x,y5h~x!…2D2„x,y5h~x!…#5s~x!, ~20!

wheres(x) is the total surface charge density on the int
face. It is given by

s~x!5q1
surf

„x,y5h~x!…1q2
surf

„x,y5h~x!…. ~21!

This means that the adsorbed part of the ionic density ha
influence on the boundary condition for the potential a
hence on the diffuse part of the ionic density, and vice ve
So Eqs.~13! and ~18! together with the boundary conditio
Eq. ~20! form a set of self-consistent equations.

The important point to note here is that Eq.~20! is only a
local condition for the dielectric displacement. In the fram
work of Gouy-Chapman theory, which describes the elec
lyte as point ions in a dielectric continuum, the charges
move freely and respond to the modulation of the interface
such a way that the total free energy of the interphas
minimized. It would be a gross oversimplification, if we a
sume a constant dielectric displacement at the interface.
means that at the interface we have neither a uniform nor
component of the dielectric displacement nor an equipo
tial line. Since thex dependence of the dielectric displac
ment is due to the deviation of the interface from a pla
geometry, we can write it in the following general form:

n~x!Di„x,h~x!…5s i
bulk1E dx8a i

bulk~x2x8!h~x8!

1E dx8E dx9b i
bulk~x2x8,x82x9!

3h~x8!h~x9!1•••. ~22!

This equations describes the dielectric displacementat the
boundary as anonlinearandnonlocalresponse of the regula
e

is
y
f
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surface charge distribution to the perturbationh(x) and it
can be interpreted in the following way: In the case of
modulated interface the dielectric displacement at the bou
ary is not simply given by the local surface charge dens
s i

bulk , but it contains additional contributions from all th
other points on the surface. In order to see the first nonv
ishing influence on quantities which involve an integrati
over the lateral dimension, we have to go to the second o
in the height function, because, due to the condition of E
~4!, first order terms vanish. Since in principle the nonele
trostatic adsorption potentialu does not restrict the distribu
tion of the charge in the lateral direction of the singu
layer, the singular surface chargeon the interface can also
respond to the modulation of the interface and we write
similar perturbative expansion for it

qi
surf

„x,h~x!…5s i
surf1E dx8a i

surf~x2x8!h~x8!

1E dx8E dx9b i
surf~x2x8,x82x9!

3h~x8!h~x9!1•••. ~23!

Equations~22! and~23! are the basic equations in this wor
since the behavior of the system is due to the consta
s i

bulk , s i
surf and the nonlocal response functionsa i

bulk , a i
surf,

and b i
bulk , b i

surf, which have to be determined sel
consistently.

It is convenient to solve Eq.~13! together with the bound-
ary conditions Eqs.~19! and~20! separately fory,h(x) and
y.h(x) and require the continuity of the potential at th
interface

V1„x,y5h~x!…5V2„x,y5h~x!…. ~24!

With Eqs.~13!, ~18! and Eqs.~19!–~24! the problem is now
completely defined and the response functions can be d
mined.

C. The formal solution for the potential

In order to solve the linearized Poisson-Boltzmann eq
tion @Eq. ~13!# subject to the boundary conditions Eqs.~19!
and ~20!, we assume thath(x) is a small quantity. In this
case we can use standard perturbative techniques for so
differential equations with complicated boundaries@21,11#.
A detailed description of this approach was given elsewh
@15#. There is also an approach based on the multiple s
tering technique@13#, which gives a formally exact solution
of the linearized Poisson-Boltzmann equation. But since
this work we introduce a boundary condition, which itself
written as a perturbative expansion inh(x) @see Eq.~22!#,
the standard perturbative technique for the solution of
~13! is more convenient. The result for the potential up to t
second order in the height function can be written for ea
side as

V̂i~q,y!5(
n

V̂i
(n)~q,0!exp@~21! ik i ,qy#, ~25!

with
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V̂i
(0)~q,0!56

s i
bulk

e ik i
2pd~q!1ci , with c150, c25DV,

~26!

V̂i
(1)~q,0!5

1

e ik i ,q
@s i

bulkk i6â i
bulk~q!#ĥ~q!, ~27!

V̂i
(2)~q,0!56

1

e ik i ,q
E dk

2p
ĥ~q2k!ĥ~k!

3H 1

2
s i

bulkk i
2F ~2r i ,k21!1

~q2k!k

k i
2 S 2

r i ,k
21D G

6â i
bulk~k!Fk i ,k1

~q2k!k

k
i ,k

G1b̂ i
bulk~q,k!J , ~28!

where the upper sign of6 refers to i 51. Here we have
introduced the lateral Fourier transform of the potential

V̂~q,y!5E
2`

1`

dxeiqxV~x,y! ~29!

and the modified Debye length

kq5kr q and r q5A11
q2

k2
. ~30!

This expansion can be stopped at the second order ter
the conditionkh(x)!1 holds. Furthermore, the height fun
tion h(x) must be infinitely differentiable, since otherwis
the series does not converge@11#. Far from the interface the
perturbation from the flat geometry is negligible sincekq
>k, and therefore the higher order terms decay faster t
the zeroth order. Care has to be taken, if one uses Eq.~25!
for the calculation of the potential aty5h(x), since the ex-
ponential has to be expanded, in order to be consistent w
solution up to second order inh.

Having the general form of the solution for the potenti
we can calculate the constantss i

bulk , s i
surf and the response

functionsa i
bulk , a i

surf andb i
bulk , b i

surf by satisfying the con-
ditions for the dielectric displacement and the potential at
interface position. This is done in the Appendix.

So far we have assumed that the potential of zero cha
DVPZC is our independent variable, since it enters direc
into the boundary condition. However, it has to be det
mined from the condition that the total interfacial exce
chargeQ on one side of the interface is zero. The to
charge on each side is simply given by the sum of the diff
and the adsorbed part of the ionic density

Q15E dxE
h(x)

`

dyq1
bulk~x,y!1E dSq1

surf
„x,h~x!…,

~31a!

Q25E dxE
2`

h(x)

dyq2
bulk~x,y!1E dSq2

surf
„x,h~x!…,

~31b!
, if

n

a

,

e

ge
y
-
s
l
e

wheredS5@11 1
2 hx

2(x)#dx is the metric of a weakly modu
lated surface. The result up to the second order in the he
function is

Q1[2Q52~s1
bulk2s1

surf!E dS2h2E dk

2p
@b̂1

bulk~0,k!

2b̂1
surf~0,k!#ĝ~k!, ~32a!

Q2[Q5~s2
bulk1s2

surf!E dS1h2E dk

2p
@b̂2

bulk~0,k!

1b̂2
surf~0,k!#ĝ~k!, ~32b!

where we have chosen the charge on side 2 to be positive
introduced the two-point height-height correlation functi
of the interface

ĝ~k![
ĥ~2k!ĥ~k!

h2
. ~33!

It is important to note thatb̂(0,k) depends onâ(k) ands.
Therefore, even if the terms linear inh(x) are averaged ou
by integration, they have an influence on the second or
terms and must be taken into account. On the other han
we only take into account the nonlocal linear response of
dielectric displacement at the surface, we obtain the triv
result that Q5(s1

bulk2s1
surf)*dS5(s2

bulk1s2
surf)*dS. This

shows that it is crucial to go beyond the linear response
the dielectric displacement.

III. ION ADSORPTION AT ONE SIDE
OF THE MEMBRANE

In this section, we will describe the influence of speci
adsorption of cations contained in the electrolyte on side 1
the interface. The adsorption of ions gives rise to a diffu
charge distribution on the same side of the interface, wh
due to the electroneutrality of the total system, exactly co
terbalances the adsorbed charge. However, the electro
trality is only a global condition and as we will see, intere
ing local behavior can appear, when the interface
perturbed from the flat geometry. In order to study the b
havior of our model system as a function of the differe
parameters like Debye lengths and adsorption potentia
more detail, we assume that the modulation of the membr
can be described by a simple deterministic function

h~x!5h cos
2p

l min
x and ĥ~k!5

hA~dm,11dm,21!

2
,

~34!

where k52pm/ l min and m50,61,62, . . . . The integral
*(dk/2p) can then be replaced by the summation (1/A)(k ,
and we can calculate the response functions very easily f
given set of parameters. The values we use for the height
the wavelength of the interface modulation are based on
sults from a molecular dynamics simulation of the water-1
DCE interface@22#. Liquid-liquid interfaces are commonly
used as models for biological membranes. Note, howe
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4436 PRE 60O. PECINA AND J. P. BADIALI
that our simple model calculations are only intended to ill
trate the general behavior of the system.

Since we are in the linear potential regime, the chargeQ
is just proportional to the potential dropDV and contains a
potential independent part due to the adsorption

Q~DV!5CDV1Q~DV50!, ~35!

where the proportionality constantC5dQ/dDV is just the
differential capacity and the PZC can be easily determi
from Eq. ~32a! or Eq. ~32b! by the relation

DVPZC52
Q~DV50!

C
. ~36!

At this value the of the PZC the total charge of the system
zero up to the second order inh(x). Note that both the ca
pacityC and the total chargeQ contain the information abou
the real area of surface and hence the PZC is independe
it. Figure 1 shows the ratio ofDVPZC/DVPZC

flat as a function of
k1 for different values ofk2. This ratio starts from the geo
metrical roughnessAreal/A for k150 and decreases with in
creasingk1 towards a limiting value of 1. At a first glanc
this seems to be surprising, but the reason is the follow
In the limit of zero Debye length (k1→`) the diffuse part of
the charge is located directly at the interface and comp
sates the adsorbed part of the charge. Apart from the dif
ent area the situation is exactly the same as for a flat in
face, but since the potential drop across the interface d
not depend on the area, the PZC is independent of the
metrical roughness. In contrast, for infinite Debye leng
(k1→0) the adsorbed charge goes to zero for the flat and
rough surface, but the ratio of it differs just by the geome
cal roughness. Since the capacity for infinite Debye lengt
the same for the flat and the rough interface@15,23#, the
geometrical roughness is also reflected in the ratio of
PZC. This is a very interesting behavior, since it implies t
from measurement of the PZC for various concentrations
geometrical roughness can be determined in the limit of z
concentration, if the adsorption parameters are known.

FIG. 1. Ratio of the PZC for a rough and a flat surface a
function of k1 with e15e2580, h55 Å, l min520 Å, L1

151 Å,
and u1

1523 kT. The geometrical roughness isAreal/A51.62. If
not stated otherwise, these parameters are the same for the fo
ing plots.
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The above explanation for the behavior of the ratio of t
PZC as a function ofk1 is only a ‘‘geometrical’’ argument.
However, in order to explain also the dependence on
concentration of that side where no adsorption occurs,
has to investigate the origin of the additional potential dr
for the rough interface in more detail. To this end we need
express the PZC as an expansion in«h(x), where « is a
parameter of smallness. Instead of expanding Eq.~36! up to
«2h2, it is more convenient to assume that the total cha
Q50 is the external variable. Then we can formally wri
the PZC as an expansion in terms of«h

DVPZC~Q50!5«0DVPZC
(0) 1«2DVPZC

(2) , ~37!

where the term linear in«h is zero due to the condition o
Eq. ~4!. If we insert Eq.~37! into Eqs.~A2!, ~A6!, and~A12!,
we obtain also an expansion of the response functions, w
now are inserted into the expression for the total charge
side 2@Eq. ~32b!#. Collecting terms with the same order of«
gives the expression for each order of the PZC. The ze
order is just the PZC for the flat surface, and it is given b

beDVPZC
(0) 5

k1l1

11k1l1
5be

s1
surf~DVPZC

(0) !

e1k1
, ~38!

with a length characterizing the adsorption

l15
1

2
L1

1e2bu1
1

. ~39!

Note that due to the linearization of the Poisson-Boltzma
equation the expression forDVPZC

(0) is only valid for k1l1

,1, since otherwise the high surface charge leads to non
earities in the potential profile. The isotherm in Eq.~38! has
the form of a Langmuir isotherm; however, this form is on
obtained in the linear Poisson-Boltzmann regime, since
the nonlinear regime the expression fors1

surf in Eq. ~A17!
and the resulting isotherm is much more complicated.

As expected, on the level of the mean-field approach,
PZC for a flat interface depends only on the properties
side 1. This is no longer true if the interface is perturb
from a flat geometry. The correction to the PZC due to
interface modulation can be written as

DVPZC
(2) 5

1

Cflat
h2E dk

2p
ĝ~k!@b̂1

surf~0,k;DVPZC
(0) !

2b̂1
bulk~0,k;DVPZC

(0) !#

52
1

Cflat
h2E dk

2p
ĝ~k!b̂2

bulk~0,k;DVPZC
(0) !, ~40!

where Cflat is the total differential capacity of the corre
sponding flat interface

1

Cflat
5

d~DV(0)!

dQ
5S 1

e1k1~11k1l1!
1

1

e2k2
D . ~41!

The response functionsb̂1
bulk , b̂1

surf, andb̂2
bulk depend on the

properties of both sides@see Eqs.~A12! and ~A26!#. So Eq.
~40! shows that a perturbation from the planar interface
ometry leads to an additional potential drop across the in

a

w-
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face. This is also true, if one considers perturbations fr
other highly symmetric geometries~sphere, cylinder!. Using
again Eq.~32a! one can express the second-order contri
tion to the PZC also through the total charge on side 1
culated at the PZC for the flat surface

DVPZC
(2) 5

Q1~DVPZC
(0) !

Cflat
. ~42!

This is an useful equation, since it relates the additional
tential drop for the rough surface to an effective charge
effective, becauseQ1(DVPZC) is zero—and the capacity fo
the flat system. It can be interpreted as follows: An initia
flat interface is kept atDVPZC

(0) and hence the adsorbed char
is exactly balanced by the diffuse charge on the same s
Then the interface is roughened, but the potential drop ac
it is still kept atDVPZC

(0) . The roughening leads to an increa
of the positive surface charge on side 1, since due to
greater surface area more cations are adsorbed. The ele
neutrality condition implies that this additional positive su
face charge has to be balanced by a negative diffuse cha
However, since the response functionb introduces a cou-
pling between the diffuse charges on both sides, the diff
counter charge can now be located on both sides of the
terface. Therefore, the effective charge on side
Q1(DVPZC

(0) ), and hence also the second-order contribution
the PZC is always positive or equals zero in some limit
cases. The effective chargeQ1(DVPZC

(0) ) as a function ofk1 is
shown in Fig. 2. Ifk150 the effective charge is of cours
also zero, since no ions are adsorbed. In the limit ofk1
→` the diffuse charge on side 1 is located at the interfa
In this case, it is most favorable for the system to balance
induced adsorbed charge completely on the same side
hence the chargeQ1(DVPZC

(0) ) is zero. The situation is differ-
ent for a finite Debye length. Now the induced surfa
charge can be partly balanced by a diffuse charge on
other side, and therefore the induced surface charge is hi
the higher the concentration on side 2. This can be seen f
Fig. 3. In addition to the increase of the surface charge,
diffuse charge decreases and this results in an overal
crease ofQ1(DVPZC

(0) ) with increasingk2 ~see Fig. 2!. How-
ever, in the limit ofk2→0 it is not possible to balance a n
charge on side 1, and thereforeQ1(DVPZC

(0) ) is zero for every

FIG. 2. Effective total chargeQ1(DVPZC
(0) ) induced by the rough-

ening of the membrane as a function ofk1.
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value ofk1, since the additional surface charge is now ag
completely balanced by a diffuse charge on the same
~see Fig. 3!. According to Eq.~42! the additional potential
drop is determined by the ratio of the effective charge a
the capacity of the flat surface. SinceCflat increases much
stronger with increasingk2 thanQ1(DVPZC

(0) ), the additional
potential drop for a rough surface is the smaller the higherk2
and the order in Fig. 1 can be explained.

The reason for the coupling between both sides is du
the electrostatic boundary condition Eq.~20!. For highly
symmetric interface geometries~plane, sphere and cylinder!
the normal component of the dielectric displacement on s
2 is zero at each point of the surface, because the nor
component of the electric field caused by the surface cha
is at each point exactly balanced by the normal componen
the field due to the diffuse charge distribution. For an ar
trary interface geometry this symmetry is broken and o
the global condition

E n~x!D2„x,y5h~x!…dS5Q[0 ~43!

holds. Thereforen(x)D2(x) can be nonzero at the interfac
position. In Fig. 4 we show two examples for the late
variation of the dielectric displacement and the surfa
charge. Due to the height-height correlation function, wh
is a second-order contribution, the dielectric displacem
does not follow the surface modulation. In the case ofk2
→` the system corresponds to an ideal metal-solution in
face with an equipotential line, and therefore the surfa
charge is independent of the surface modulation. Howe
somewhat surprising, also in the case ofk2→0 the variation
of the surface charge is more than two orders of magnit
smaller than the variation of the dielectric displaceme
Hence, the assumption of a modulation-independent sur
charge would be a good approximation. Note that this is o
true at the PZC. Applying an additional potential drop c
lead to variations of the surface charge which are of the sa
order as the variations of the dielectric displacement. A
rect consequence of the nonzero dielectric displacem
n(x)D2(x) is that even at the PZC there is a local diffu
charge distribution on that side where no ion adsorption
curs. Furthermore, a part of the PZC falls also off on the s
without ion adsorption. This means that the diffuse cha

FIG. 3. Induced surface charge and the diffuse counter cha
on the same side as a function ofk2 for k150.1 Å.
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4438 PRE 60O. PECINA AND J. P. BADIALI
distribution on side 2 makes no net contribution to t
charge, but a net contribution to the potential drop. The
fore, the physical situation differs fundamentally from th
for interfaces with highly symmetric geometries.

Locally the potential at the surface can be very differe
and it depends strongly on the concentration of side 2. T
is shown in Fig. 5, where we have plotted the potential d
tribution at the interfaceV„x,h(x)…, which is also the local
potential drop across side 1@see Eq.~25!#. A value above

FIG. 4. Dielectric displacement and surface charge at the P
for a rough interface with cation adsorption on side 1 as a func
of the lateral position. The parameters arek150.05 Å21, k2→`
~a! andk2→0 ~b!.

FIG. 5. Lateral distribution of the potential at the interfac
which is equal to the potential drop across side 1, normalized by
overall potential dropDVPZC with k150.05 Å21.
-
t

t
is
-

100 means that the local potential drop across side 1 at
lateral position is larger than the overall potential drop. A
cordingly, a value below 100 corresponds to a potential d
on side 1 which is lower than the overall potential drop.
can be seen, the behavior changes drastically with a cha
of k2. In the limit of k2→` the potential drop occurs o
course completely on side 1, similar to an ideal met
solution interface, but for a finite value ofk2 the potential
oscillates. The amplitude of the variation of the potent
drop is the largest fork15k2. This local behavior of the
potential drop is of great importance, if an ion or electr
transfer reactions across the membrane follows after the
is adsorbed. From the total potential drop across the inter
one cannot conclude, if the necessary overpotential for
transfer is reached at each position, since at some posit
the potential has the appropriate value, whereas at other
sitions it has not. This means that there are preferred p
tions for the ion or electron transfer. The average poten
drop across side 1 is then simple given by the integrat
over x. For k2→` the potential drop occurs completely o
side 1, whereas fork2→0 about 94% of it falls off on side 1
and the remaining 6% falls off on side 2. Although the a
erage potential drop on side 2 is not large, the local poten
drop can be about 14%.

IV. THE STABILITY OF A MEMBRANE WITH SPECIFIC
ADSORBTION

It is of fundamental interest to understand the electrost
contributions to the elastic bending constants of a membra
since they determine the stability of the interface. Pheno
enologically the total free energy of a two-dimension
modulated surface can be written as@24,4#

Fsurf5g0E dS12kcE dS~H2c0!21 k̃E dSK, ~44!

wherec0 is the spontaneous curvature andk̃ the Gaussian
bending modulus. The mean curvatureH and the Gaussian
curvatureK are given by@4#

H5divS ¹h~x,y!

2A11@¹h~x,y!#2D , ~45!

K5
hxxhyy2hxy

2

$11@¹h~x,y!#2%2
, ~46!

and the metricdS is

dS5dxdyA11@¹h~x,y!#2. ~47!

As before, we confine ourselves here to a weakly o
dimensional modulation of an interface with zero sponta
ous curvature. In this case the curvature free energy sim
fies to

Fsurf5g0E dxS 11
1

2
hx

2~x! D1
1

2
kcE dxhxx

2 ~x!. ~48!

The easiest way to calculate the electrostatic free ene
of our system is to start with the Lippmann equation

C
n

e
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S ]g

]~DV! D
m1 ,m2

52
Q

Areal
. ~49!

Integration on both sides leads to the expression

Areal~g2g0!5DF52E
0

DV

Q~DV8!d~DV8!. ~50!

Here,g0 is the surface tension in the absence of a poten
drop, andDF is the change in free energy due to the form
tion of the diffuse double layers. The interfacial exce
chargeQ can be expressed through Eqs.~32a! or ~32b!. This
is a closed expression for the electrostatic free energy of
modulated interface in terms of the height-height correlat
function, which is valid for every value of the Debye length
However, our aim here is to compare it only to the curvat
free energy of Eq.~48!, where the bending modulus is inde
pendent of the wavelength.

If the height-height correlation function has a smalle
correlation lengthl min and the conditionk i l min@1 holds, we
can expand the terms of the response functions which c
tain the quantityr i ,k up to (k/k i)

4 and write the free energy
@Eq. ~50!# in the case of equal dielectric constants as

F5~g01gcorr!E dxS 11
1

2
hx

2~x! D
1

1

2
~kel1k1

ad1k2
ad1k3

ad!E dxhxx
2 ~x!, ~51!

where the contribution to the surface tension is

gcorr52
1

2 FeS k1k2

k11k2
D ~DV!21Q1

surf~DV!G . ~52!

The contributions to the elastic bending modulus are gi
by

kel5kc~DV!5
1

8
e~DV!2F3S k1k2

k11k2
D 2S 1

k1
3

1
1

k2
3D

22S k1k2

k11k2
D 3S 1

k1
2

2
1

k2
2D 2G , ~53!

k1
ad5

1

4

Q1
surf~DV!

~k11k2!2 S k2
22k1

2

k1k2
D , ~54!

k2
ad52

1

4 S Q1
bulk~DV!

k1
2

2
Q2

bulk~DV!

k2
2 D k1k2

~k11k2!2

k1l1

M
,

~55!

k3
ad52

1

2 S Q1
bulk~DV!

k1
2

1
Q2

bulk~DV!

k2
2

1
Q1

bulk~DV!1Q2
bulk~DV!

k1k2
D k1k2

~k11k2!2

M21

M
,

~56!
al
-
s

e
n
.
e

t

n-

n

whereM is defined in the Appendix and

Q~DV!5E
0

DV

s~DV8!d~DV8!. ~57!

The pure electrostatic contributionkel to the bending
modulus is always positive. This means that a diffuse la
which is not influenced by a surface charge~for example, if
one applies an external potential drop across the interfa!
leads always to a stabilization of the membrane. The pre
value ofkel depends on the combination of the Debye leng
given in the parentheses of Eq.~53!, which can vary between
1.5 for k15k2 or 1 for k1@k2 or k1!k2.

In contrast to the pure electrostatic contributionkel, the
contribution arising from the adsorbed charge can also
negative. This is an important result, since it means that
to the adsorption the membrane can be destabilized. N
that in our model this stems only from the electrostatic co
tributions of the adsorbate and not from the nonelectrost
effects of the ions themselves. The contributionk1

ad is due to
the response of the dielectric displacement to the modula
of the interface in the presence of a modulation-independ
surface charge. If the inverse Debye length on the side wh
no adsorption occurs is higher than on the side with adso
ing ions, this contribution is positive. It vanishes for equ
Debye lengths and becomes negative fork1.k2. This shows
that the usual assumption of equal Debye lengths on b
sides of the membrane describes only a very special si
tion, which is rarely observed in a real system. If the surfa
charge itself can also respond to the perturbation from
flat interface geometry, one obtains two additional contrib
tions to the bending modulus. The direct second-order
sponse of the surface charge leads tok2

ad, andk3
ad is due to

the response of the dielectric displacement in the presenc
a modulation-dependant surface charge.

The bending modulus at the PZC of the interface is o
tained, if one calculates it atDV5DVPZC

(0) , since the terms
proportional to the bending modulus give already a seco
order contribution to the free energy. The pure electrost
contribution is shown in Fig. 6~a! for different values of the
adsorption potentialu1

1 . This contribution is the higher the
higher k1 and the more attractive the adsorption, beca
both parameters increase the potential drop and hence
diffuse charge. The total contribution fromkad is shown in
Fig. 6~b!. This contribution becomes negative in the regi
k1'k2. The precise intersection value withy50 depends
also onu1

1 . The different contributions tokad are shown in
Fig. 7. The dominating part isk1

ad, the contributionsk2
ad and

k3
ad are much smaller, apart from the range wherek1'k2.

This shows again, as expected from Fig. 4, that the m
effect is the response of the dielectric displacement in
presence of a surface charge and not the response o
surface charge itself. Therefore a modulation independ
surface charge would be a good approximation. Figure
shows the ratio of the total contribution to bending modu
and the pure electrostatic contribution as a function ofk1.
For very low concentrations of the adsorbing ions the be
ing modulus is positive and can be even greater than the
electrostatic contribution, but for higher concentrations it
lower than the pure electrostatic contribution and becom
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4440 PRE 60O. PECINA AND J. P. BADIALI
negative for high concentrations. This means that a m
brane that specifically adsorbs one kind of ions is dest
lized due to the electrostatic contribution of the adsorb
charge to the bending modulus, if the bulk concentration
the adsorbed ion exceeds a certain value. With increa
strength of the adsorption potentialu1

1 the destabilization is
shifted to lower concentrations. The expression for the c
vature free energy@Eq. ~51!# is only valid for k i l min/2p.1,
but for largel min and largek2 the region where the bendin
modulus is greater than the pure electrostatic contributionkel

FIG. 6. ~a! Pure electrostatic contribution to the bending mod
lus kel, ~b! contribution of the adsorbed charge to the bend
modulus. The parameters for this and the following plots arek2

50.1 Å21 and l 550 Å.

FIG. 7. Different contributions tokad.
-
i-
d
f

ng

r-

can be reached. Note that due to the coupling between
sides the bending modulus is not a universal function
k1l min .

Finally, we consider the special case of a modulatio
independent surface charge andk15k25k. In this case the
only contribution to the bending modulus iskel, which we
can write as

kel5
3

16

~s1
surf!2

ek3
. ~58!

This result is three times greater than that obtained in R
@12–14# for a transparent membrane with an arbitrary s
face. The value forkel found in Refs.@12–14# is in accor-
dance with the bending modulus for highly symmetric inte
face geometries@7–9#. The difference to our result is due t
the nonlocal response of the dielectric displacement to a
turbation from a flat surface, which has not been taken i
account in Refs.@12–14#. However, the response of the d
electric displacement is crucial, whenever the interface
ometry deviates from a highly symmetric one~plane, sphere,
or cylinder!, since then neither the normal component of t
dielectric displacement nor the potential at the interface
sition can be fixed. In contrast, it is interesting to note th
our value is the same as found in Ref.@12# in the case of an
electrically insulating~opaque! membrane.

V. CONCLUSION

In this work, we studied the electrostatic properties o
modulated membrane, which adsorbs one sort of ions on
side of the interface. The investigation was based on a mo
Hamiltonian, which consists of a bulk part and a singu
part describing the adsorbed layer. Within the mean-fi
theory the minimization of the bulk part leads to the usu
Boltzmann equations for the ionic densities, whereas
minimization of the singular part leads to an adsorption i
therm. Using the Poisson equation and the linearized Bo
mann equation we derived a solution for the tw
dimensional charge profiles, which allows us to study
equilibrium between the diffuse and the adsorbed charge

The result of this calculation will strongly depend on th
applied boundary condition. We investigated the case of
electrically transparent membrane. In this case both side

-

FIG. 8. Ratio of the total electrostatic contribution to the ben
ing moduluskel1kad and the pure electrostatic contributionkel.
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the interface are coupled and the dielectric displacemen
the interface position can respond to the perturbation fro
flat geometry. This was accounted for by writing it as a no
local and nonlinear response to the interface modula
function.

We have shown that the interface modulation leads t
higher potential of zero charge compared to the flat interfa
In the limit of zero concentration on that side where the io
are adsorbed, the ratio of the potential of zero charge for
rough and the flat surface is just given by the geometr
roughness, whereas in the limit of infinite concentration
potential of zero charge is the same as for the flat surfa
However, for finite concentrations it depends on the interp
of the Debye lengths of both sides of the membrane, si
the second-order response function of the dielectric displa
ment introduces a coupling between the two diffuse laye
The origin of this coupling lies in the boundary conditio
@Eq. ~ 20!#. Due to the perturbation from a highly symmetr
interface geometry the normal component of the dielec
displacement on that side where no adsorption occurs ha
to be zero at each point of the interface. This leads t
complicated local diffuse charge distribution on that sid
which averages to zero, but which makes a contribution
the overall potential drop across the interface. Although g
bally the main part of the potential drop falls off on that sid
where the adsorption occurs, the local variation can be q
large, and at some position the potential drop across this
can be even higher than the overall potential drop. This
important for ion and electron transfer reactions across
interface, which follow after the ion has adsorbed, since o
at some positions the potential conditions for a transfer w
be matched.

For the stability of membranes it is of crucial importan
to know the electrostatic contribution to the elastic bend
modulus of the membrane. We calculated the appropr
contribution and have shown that the value strongly depe
on the ionic concentrations on both sides of the interface
the Debye lengths are equal for both sides, the electros
contribution to the bending modulus is always positive,
dependent of the amount of adsorbed charge. However, i
Debye length of that side where the adsorption occurs
larger than on the side without adsorption, the electrost
contribution can become negative and thus leads to a de
bilization of the flat interface. Our results differ from prev
ous ones@12–14#, since we took into account the response
the dielectric displacement to the perturbation from a
geometry. Furthermore, we treated the case of different
bye lengths on both sides of the membrane and showed
the condition of equal Debye lengths on both sides of
interface is a very special situation, which is hardly met in
real system.

A simple model for membranes is an interface betwe
two immiscible electrolyte solutions. If we calculate the c
pacity for such systems within our theory@15#, the agree-
ment with experimental results@25,26# is very good. How-
ever, we are not aware of systematic measurements o
potential of zero charge, which allow a comparison with t
findings of this work. A detailed discussion of the influen
of specific adsorption at liquid-liquid interfaces will be give
elsewhere@23#.

The major drawback of our model is the limitation intr
at
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duced by the linearization of the Poisson-Boltzmann eq
tion. This limits our approach to a small potential of ze
charge and hence to a parameter range, wherek1l1 is not
much greater than 1@see Eq.~38!#, since otherwise the ad
sorption leads to nonlinearities in the potential profile ne
the interface. Due to this linearization also the electrosta
contribution to the bending modulus is quite small compa
to experimental values of the total bending modulus@6#. In
future work, it will therefore be necessary to extend th
model to the nonlinear Poisson-Boltzmann regime.
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APPENDIX: THE RESPONSE FUNCTIONS

We can calculate the constantss i
bulk , s i

surf and the re-
sponse functionsa i

bulk , a i
surf and b i

bulk , b i
surf by satisfying

the conditions for the dielectric displacement and the pot
tial at the interface. From Eqs.~20! and ~24! we get after
some tedious algebra for each order of the perturbative
pansion a set of two equations

for zeroth-order terms

S 1 21

1/e1k1 1/e2k2
D S s1

bulk

s2
bulkD 5S ssurf

DV D , ~A1!

and the solution

s1
bulk5CGC

S DV1

(
i

s i
surf

e2k2

D , ~A2a!

s2
bulk5CGC

S DV2

(
i

s i
surf

e1k1

D , ~A2b!

with

CGC5S 1

e1k1
1

1

e2k2
D 21

. ~A3!

For first-order terms

S 1 21

1/e1k1,q 1/e2k2,q
D S â1

bulk~q!

â2
bulk~q!

D 5S âsurf~q!

Abulk~q!
D , ~A4!

with

Abulk~q!5
s2

bulk

e2
S 1

r 2,q
21D2

s1
bulk

e1
S 1

r 1,q
21D , ~A5!

and the solution

â1
bulk~q!5CGC,q

S Abulk~q!1

(
i

â i
surf~q!

e2k2,q

D , ~A6a!
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â2
bulk~q!5CGC,q

S Abulk~q!2

(
i

â i
surf~q!

e1k1,q

D , ~A6b!

with

CGC,q5S 1

e1k1,q
1

1

e2k2,q
D 21

. ~A7!

For second-order terms

S 1 21

1/e1k1,q 1/e2k2,q
D S b̂1

bulk~q,k!

b̂2
bulk~q,k!

D 5S b̂surf~q,k!

Bbulk~q,k!
D

~A8!

with

Bbulk~q,k!5
1

2

s1
bulkk1

e1
f 1

s~q,k!1
1

2

s2
bulkk2

e2
f 2

s~q,k!

1
â1

bulk~k!

e1
f 1

a~q,k!2
â2

bulk~k!

e2
f 2

a~q,k!,

~A9!

and

f i
s~q,k!512

1

r i ,q
H ~2r i ,k21!1

~q2k!k

k i
2 S 2

r i ,k
21D J ,

~A10!

f i
a~q,k!512

1

r i ,q
H r i ,k1

~q2k!k

k i
2r i ,k

J , ~A11!

and the solution

b̂1
bulk~q,k!5CGC,q

S Bbulk~q,k!1

(
i

b̂ i
surf~q,k!

e2k2,q

D ,

~A12a!

b̂2
bulk~q,k!5CGC,q

S Bbulk~q,k!2

(
i

b̂ i
surf~q,k!

e1k1,q

D .

~A12b!

Inserting Eqs.~A2!, ~A6!, and~A12! into Eq. ~25!, and per-
forming the back transformation into real space, the two
mensional potential profile is determined in terms of the
lution parameterse i andk i , the potential dropDV across the
interface, the height functionh(x) and the surface charg
response functionsssurf, asurf, andbsurf, which depend them-
selves on the potential at the boundary.

According to Eq.~18! the adsorbed charge densityon the
interface depends on the diffuse charge densityat the inter-
face, which has also to be calculated from a perturba
expansion inh(x) @15#. If one compares this expansion wit
Eq. ~23! and uses Eqs.~A2!–~A12!, one obtains for each
order of the perturbative expansion again a set of two eq
tions
i-
-

e

a-

For zeroth-order terms

S 11x1k1l1 x1k1l1

x2k2l2 11x2k2l2
D S s1

surf

s2
surfD 5S c12CGCDVk1l1

c21CGCDVk2l2
D ,

~A13!

with

xi5
e ik i

e1k11e2k2
, ~A14!

l i5
1

2
~Li

1e2bui
1

1Li
2e2bui

2

!, ~A15!

ci5
1

2
~erBiLi

1e2bui
1

2Li
2e2bui

2

!, ~A16!

and the solution

s1
surf5

1

M
$c1~11x2k2l2!2x1k1l1c2

2CGCDVk1l1~11k2l2!%, ~A17a!

s2
surf5

1

M
$c2~11x1k1l1!2x2k2l2c1

1CGCDVk2l2~11k1l1!%, ~A17b!

with

M511x1k1l11x2k2l2 . ~A18!

For first-order terms

S 11x1,qk1l1 x1,qk1l1

x2,qk2l2 11x2,qk2l2
D S â1

surf~q!

â2
surf~q!

D
5S 2x1,qk1l1Asurf~q!

2x2,qk2l2Asurf~q!
D , ~A19!

with

xi ,q5
e ik i

e1k1,q1e2k2,q
, ~A20!

Asurf~q!5s1
bulkk1~12r 1,q!1s2

bulkk2~12r 2,q! ~A21!

and the solution

â1
surf~q!52x1,qk1l1

Asurf~q!

Mq
, ~A22a!

â2
surf~q!52x2,qk2l2

Asurf~q!

Mq
, ~A22b!

with

Mq511x1,qk1l11x2,qk2l2 . ~A23!

For second-order terms
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S 11x1,qk1l1 x1,qk1l1

x2,qk2l2 11x2,qk2l2
D S b̂1

surf~q,k!

b̂2
surf~q,k!

D
5S 2x1,qk1l1Bsurf~q,k!

2x2,qk2l2Bsurf~q,k!
D ~A24!

with

Bsurf~q,k!52
1

2
@s1

bulkk1
2r 1,qf 1

s~q,k!2s2
bulkk2

2r 2,qf 2
s~q,k!#

2â1
bulk~k!k1r 1,qf 1

a~q,k!

2â2
bulk~k!k2r 2,qf 2

a~q,k!, ~A25!
tt.

r-

-

o-
and the solution

b̂1
surf~q,k!52x1,qk1l1

Bsurf~q,k!

Mq
, ~A26a!

b̂2
surf~q,k!52x2,qk2l2

Bsurf~q,k!

Mq
. ~A26b!

If we now substitute Eqs.~A17!, ~A22!, and~A26! into Eq.
~25! and perform the back transformation into real space,
two dimensional potential profile is completely determin
in terms of the solution parameterse i andk i , the potential
dropDV across the interface, the external adsorption para
etersui

6 , Li
6 and the height functionh(x).
s.

.
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