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Electrostatics of a modulated membrane with specific adsorption
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We present a simple model for the electrostatic properties of a modulated membrane separating two different
electrolyte solutions. The model is based on an extension to linear Gouy-Chapman theory. Starting from a
Hamiltonian which contains a singular part for the surface contributions, we obtain within the mean-field
approach a set of equations which allows us to study the equilibrium between the diffuse and singular parts of
the charge carriers. It is shown that the interface modulation leads to a higher potential of zero charge
compared to the flat system. The value of this effect depends on the interplay between the height and the
characteristic length of the interface modulation and the Debye lengths on both sides, even if the adsoprtion
occurs only on one side of the interface. In the latter case, the side where no adsorption occurs locally exihibits
a diffuse charge distribution, which averages to zero, but which makes a contribution to the overall potential
drop across the interface. We also calculate the electrostatic contribution to the elastic bending modulus of the
membrane and show that specific adsorption of ions can destabilize the flat interface.
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PACS numbgs): 68.10—m, 82.65-i, 68.35.Ct

[. INTRODUCTION surface tension. If, however, the system has a very low sur-
face tension—which is often the case for biological
An interface consisting of a thin boundary which sepa-membranes—the fluctuations are very large and controlled
rates two different electrolytes is of great importance, since iby the elastic bending moduldg of the interface. For this
is found in various fields such as colloid chemistry and phystype of fluctuations the mean height fluctuation is given by
ics, membrane science, electrochemistry, and biology, fof4]
example in cell membranes. It is therefore of fundamental
interest to understand the electrostatic properties of such a KeT
system. If one considers a planar interface geometry, one can <|F1(q)|2> =2 (2
make use of electric double layer theories, which are familiar keq*
from theoretical electrochemistry and which go far beyond
the mean-field level of the widely used Gouy-Chapman There is a large amount of literature dealing with the elec-
theory, taking into account many microscopic details of thetrostatic contribution to the elastic bending moduliasnd
system[1]. However, most of these interfaces are not flat,also the Gaussian modulus in the case of an interface modu-
but roughened due to thermal fluctuations of the interfacéated in two dimensions Since k. has the dimensions of
position. It is therefore useful to investigate the effects intro-energy, the electrostatic contribution to it must have the form
duced by a modulatioh(x) of the interface position on the fe(AV)?/k, f0'(2)/6K3, or a mixed formf oyAV/ «? for a po-
electrostatic properties within a simple model, in order totential dropAV across the interface or a surface chasge
understand some basic physical aspects. With basic physicadspectively. Heref is a dimensionless constant which is
aspects we mean the interplay between the two Debygetermined by the boundary condition. The exact value and
lengths of the system and the two new length scales introthe sign off are important, sincé. enters for example ex-
duced by the surface modulation, namely the height of thgonentially into the persistence lendtl, which is a mea-
modulation and its characteristic length. In addition, there issure for the distance over which the normals of the surface
another length chracterizing the specific adsorption. become decorrelated, and it can be measured with great pre-
If the size of the thermal fluctuations is mainly deter- cision (for a review see Ref6]). Expansion of the linear or
mined by the surface tension of the system, the modulatioponlinear Poisson-Boltzmann equation in terms of the curva-
of the interface can usually be described within the theory ofure for highly symmetric interface geometrigs-9] and a
capillary waveg2,3]. Under neglect of gravitational effects, sinusoidal modulation of a planar membrdaé], or expan-
the mean square height fluctuation of the interface position igion of the linearized Poisson-Boltzmann equation in the
Fourier space is given by case of arbitrary geometridd1—14 allows the incorpora-
tion of the electrostatic effects into the curvature free energy.
. kgT A peculiarity of highly symmetric interfaces such as planes,
(Ih(@|*)=—, (1) cylinders, and spheres is that a uniform normal component of
" the dielectric displacement at the interface position corre-
. sponds also to a constant potential at the interface. For an
whereh(q) is the Fourier transform of the function describ- arbitrary interface geometry no such correspondence exists.
ing the surface modulatiom, is the wave vector, anglis the  This has an important consequence for the boundary condi-
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tion of an elctrically transparent membrane between twapproach has the advantage that the resulting equations are
electrolyte solutions, since in this case neither the dielectridairly simple. It is similar to that of Bindef19] for the de-
displacement nor the potential at the interface is uniform. Irscription of surface phase transitions. The important differ-
our opinion, this aspect has been overlooked so far in thence, however, is that in our case the boundary condition is
above cited literature. not contained in the Hamiltonian itself, but is imposed by
In a recent publication we derived an extension to themacroscopic electrostatics.

linear Gouy-Chapman theory, in order to describe the prop- We can write the Hamiltonian for our system as a func-
erties of an modulated liquid-liquid interface between twotional of the bulk (regulay ionic densitiesp™(r) and the
immiscible electrolyte solutiongl5]. The same approach is surface(singular or adsorbedonic densitied” = (R)
also valid for the description of an idealized infinitesimal
thin and electrically transparent membrane which separates totr _+ * _ bulk- _+ —
two different electr)(glyte soplutions. In this work, we willloex- BH LI ()T (R)]‘i;z AR (N)pi (0]
tend our recent approach, in order to include specific adsorp-
tion of ions at the interface. The adsorption or nonelectro- +HMTAR). TR (3
static interaction of ionic species with a membrane is for , , o
example an important preceding step in the delivery ofVhere is 1kgT, r=(x.y,2) is a point in the bulk of the
drugs. We will start from an effective Hamiltonian for the Solution,R=(x,y,z=h(x,y)) is a point on the interface, and
system, which consists of a regular and a singular part. The denotes the_ _S|de_ of the_lnterface. The m_odulatlon of the
mean-field approach, together with the appropriate boundarjtérface position is described by the functib(x,y), and
condition for the dielectric displacement at the interfacel =1 for z>=h(x,y) andi=2 for z<h(x,y). Furthermore,
leads to a set of self-consistent equations for the potentidV® require the following condition for the surface modula-
and the ionic distribution, which can be solved analyticallytion function:
within the linear Poisson-Boltzmann approximation. This
will be shown in Sec. Il for the general case of a modulated J h(x,y)dxdy=0. (4)
interface. In Sec. lll we describe in more detail the potential
profllt_a and the ch_arge dlstrl_butlon for the case of cation adif the spontaneous curvature of the interface is zero, this can
sorption on one side of the interface, and in Sec. IV we turn : . . .
to the appropriate electrostatic contribution to the elasticalw".jlys be achlgved W|thou_t_ loss of generality by a smtat_)le
bending modulus for this system. Finally, we give a Shortcho_lce of th_e midplane position. The bu[k part of 'ghe Hamil-

: ' ' tonian consists of the nonlocal Coulombic interaction and the
summary in Sec. V. | .

ocal ideal entropy

1
' THEORETICAL APPROACH BHIM ! (1.1 (1= 588 [ Lot (N=p7 (DIV(r)ar

A. Mean-field approximation

Recently a field theoretic approach was used to describe N E i | pi(r) _1llg
electrified interfaces[16,17]. Starting from an effective = pi(n)}In p r
Hamiltonian it was shown that within the mean-field ap-

proximation the Poisson-Boltzmann equation is the result of ®
the competition between the nonlocal electrostatic interac- . .
. . - . wheree is the elementary charge apdis a reference value
tion and the entropy, which was described in terms of a Y ge apd

. - . Nor the bulk system, which will be eliminated later. The po-
|pleal mixing entropy fun(_:tlond]16]. The _effect of storp'. tential V(r) is the total potential of the system, and we can
tion was studied by adding an adsorption potential, Whlcfw- L
| .~ Wwrite it in a general form as
was contracted to a delta function, and a squared gradien
term of the total density to the Hamiltoni@ah7]. In this case
the mean-field minimization leads to a set of two coupled V(r)=f M(r,r")g"(r")dr’, (6)
second-order differential equations, which can be solved ana-
lytically in the case of small potential drops across a flatyitn
interface[18]. This Hamiltonian has the advantage that one
obtains a regular solution for the ionic densities, but from a o N B N B
mathematical point of view this approach would be very dif-  d (r)=e,_212{pi (N=p; (N+[IT(R)-T'(R)]
ficult for the application to a modulated interface, since in e
this case one has to apply a complicated boundary condition X 8(z—h(x,y))}. (7)
for the dielectric displacement at the interfdsee Sec. Il B

Here, we will start from a different Hamiltonian, which The nonlocal functioM (r,r ') describes the Coulombic cou-
contains a singular part for the description of the adsorbegling between two charges at different locations. Due to the
layer. This corresponds to the introduction of an inner layerdifference of the dielectric constants on both sides of the
but since the structure of this inner layer is not known, it isinterfaceM(r,r ") will have a complicated form. Note, how-
contracted to a singular layer in such a way that it makes never, that the potential as given in E) contains no image
contribution to the potential drop across the interface. All theterms, but these are also absent in the usual Gouy-Chapman
influence of this singular layer on the regular part of thetheory. Likewise, the singular part of the total Hamiltonian
system is taken into account by the boundary condition. Thisonsists of the electrostatic interaction and a surface entropy
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term. In addition, it contains also a nonelectrostatic potentiaPoisson equation one obtains in the linear potential regime
u, which represents the effect of the attractive short-rangé¢he linear Poisson-Boltzmann equation
interaction

N (A= xHV(r)=c;. (13
BHTI(R), T (R)]
1 For a 1-1 binary electrolyte the inverse Debye lengtix;is
:E’Bej [TH(R)—T (R)IV(R)AR =\ps= \/Bpg e, Where €= e, € is the solvent di-
electric constant.
o . I'(R) The minimization of the surface pdfEq. (11)] leads to
+ 2 {ﬂu{F{(R)JrF{(R)( In ll“j - 1) } dR. the following two equations on each side:
== 0

(8) I'“(R)

i ==*pBeV(R)+Bu;" +In (14)

Here,l"JO,i is the corresponding reference value for the sur- ol
face part of the system, which in general can be different foq
anions and cations. The nonelectrostatic potentlzs to be
understood as an effective potential, where solvation effects “(R)

are taken into account. Furthermore, we assume that this po- =+ BeV(R)+ |np'_, (15)
tential depends on the nature of the ion. This may seem a p

little artificial, since in the bulk of the solution we describe a

symmetric electrolyte. In fact, the asymmetry of the electro-and subtract Eq(15) from Eq. (14) we obtain

lyte in the bulk of the solution, which is caused by the dif-

f we apply Eq.(10) at the positiorr =R we get

ferent short-range interactions, can be taken into account by N I'"(R)
introducing a term of the following form into the Hamil- Bui +In——>——=0, (16)
tonian[16,17: Lipi (R)
- - where we have introduced the lengtly"=I'g;/p. This
BH?S=f{aﬁ*[pf(r)]2+aﬁ pi (Npy (1) length can be interpreted as the thickness of the adsorbed
layer, and it is an additional parameter in our model. The last
+a; [p; (r)]7dr. (9 equation can be rearranged into
The coefficientsa; would lead to a renormalization of the TE(R)=L*p " (R)e i . (17)

inverse Debye lengthl6], but we will ignore such a term

here for simplicity. . . -
In the mean-field approximation the profiles can be Calcu-ThIS equation r_\as the fam|l.|ar form .Of the Henry Iaw_of
adsorption, but in our model it has a different meaning, since

lated by the condition that they minimize the Hamiltonian. "= . . o
Due to the separation into a regular and a singular part wéi (R) |tself+depends via the boundary condition for the po-
tential onI';7 (R). In fact, in the linear potential region we

et
g obtain a Langmuir-type adsorption isotherm, as will be
shown in Sec. llIl. If we substitute the linear form of E@2)
— [lgHibU'k[pi*(r),pi(r)]_Mi*j pf(r)dr] =0, into Eq. (17) we obtain the following relation between the
op; (1) total surface charge density™(R)=e[T;"(R)—TI'; (R)]
(100 and the total bulk charge density at the interfaqfé'k(R)
=e[p; (R)=p; (R)]:
- {ﬂHF“”[Fﬁ(R)IF(R)]—MFfFF(R)dR]=o, 1
= _ —_
(R a 07 (R)=F{epslLie ™ —Lie M T+ MR
where the Lagrange multiplien™ takes into account the X[Lfe‘ﬁui++Li‘e‘5“f]}. (18

constraint of a fixed number of particles. From the minimi-

zation of the bulk part of the HamiltoniafEq. (10)] one  The second term of this equation depends via the Poisson
gets, after elimination ofv™ by applying Eq.(10) at a p_osi- equation on the potential, but the first term is independent of
tion far from the interface, the usual Boltzmann equations fog; ¢ Lre—ﬁui*¢ L e AU , this term gives rise to a potential

the ionic densities of zero charge. Note that the surface charge demﬁﬂ&f(R)

o is not zero foru;” =0. This is due to fact that we divided our
* Bi — f the beginning int ingular and a regular part
=)= — ex e[V(r)—cTh, 12 system from the beg g into a singular and a reg part,
pi(r) 2 A BelV(r) —cil} (12 and the entropy term in the surface Hamiltonidy. (8)]
. . - _ also makes a contribution to the free energy of the adsorbed
where pg, is the total bulk density on sideandc; is a  layer. Only in the limit ofu;" — + the surface charge den-
constant, which is usually set to zero on one side. With thesity would be zero, since then the inner layer is destroyed.
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B. The boundary condition surface charge distribution to the perturbatiofx) and it

In order to calculate the potential profile, we have to solve®@n be interpreted in the following way: In the case of a
Egs.(13) and(18) for a complicated boundary geometry. For mod_ulated |_nterface_3 the dielectric displacement at the bou_nd-
a simplification of the following calculation we restrict our- & 1S not simply given by the local surface charge density
selves to a two-dimensional system, that is, the surface i€~ but it contains additional contributions from all the
modulated in only one spatial direction and is translationallyother points on the surface. In order to see the first nonvan-
invariant along the orthogonal direction in the midplane ofishing influence on quantities which involve an integration
the surface. Note that a two-dimensional modulation of the?Ver the lateral dimension, we have to go to the second order
surface can introduce important additional features due to thi® the height function, because, due to the condition of Eq.
possible change of the topology of the surface. The investit4); first order terms vanish. Since in principle the nonelec-
gation of these effects may be the topic of future work.  trostatic adsorption potential does not restrict the distribu-

Far from the interface position the modulation of thetion of the charge in the lateral direction of the singular
membrane has a negligible effect and we can assume a pliyer, the singular surface charge the interface can also
nar equipotential line. Hence, the second-order differentiafeSpond to the modulation of the interface and we write a
equation[Eq. (13)] has to be solved with the following two Similar perturbative expansion for it
boundary conditions:

V(X,=%©)=Cy=AVpzc, V(X,*)=c1=0, (19 qisurf(xih(x))zo'?urf+f dx’ a?"(x—x")h(x")
where the potential of zero char¢RZC) AVp,c is the total , " L
potential drop across the interface, caused by the nonelectro- +J dx j dx' A7 (x=x" X' =X")
static adsorption of ions. However, from macroscopic elec-

trostatics it is known that the dielectric displacemédnt Xh(x")h(x")+- - -. (23)
=¢VV(x,y) at the electrically transparent boundary be-
tween two different dielectric media has to fulfill the follow-
ing condition[20]:

Equationg22) and(23) are the basic equations in this work,
since the behavior of the system is due to the constants
ok &S and the nonlocal response functiom®™, o™,
n(x)[D1(x,y=h(x))—Dy(x,y=h(x))]=a(x), (200 and g™, B which have to be determined self-
consistently.
where o(x) is the total surface charge density on the inter- |t js convenient to solve Eq13) together with the bound-
face. It is given by ary conditions Egs(19) and(20) separately foy<h(x) and

>h(x) and require the continuity of the potential at the
(=0 (xy=h(x))+ g2 (xy=h(x)). (2 Y1) andred yotthep

This means that the adsorbed part of the ionic density has an
influence on the boundary condition for the potential and
hence on the diffuse part of the ionic density, and vice versgy,
So Egs.(13) and (18) together with the boundary condition
Eg. (20) form a set of self-consistent equations.

The important point to note here is that Eg0) is only a
local condition for the dielectric displacement. In the frame- ] )
work of Gouy-Chapman theory, which describes the electro- C. The formal solution for the potential
lyte as point ions in a dielectric continuum, the charges can In order to solve the linearized Poisson-Boltzmann equa-
move freely and respond to the modulation of the interface inion [Eq. (13)] subject to the boundary conditions Eq%9)
such a way that the total free energy of the interphase iand (20), we assume that(x) is a small quantity. In this
minimized. It would be a gross oversimplification, if we as- case we can use standard perturbative techniques for solving
sume a constant dielectric displacement at the interface. Thigifferential equations with complicated boundarj@d,11].
means that at the interface we have neither a uniform normal detailed description of this approach was given elsewhere
component of the dielectric displacement nor an equipotent15]. There is also an approach based on the multiple scat-
tial line. Since thex dependence of the dielectric displace- tering techniquég13], which gives a formally exact solution
ment is due to the deviation of the interface from a planarof the linearized Poisson-Boltzmann equation. But since in
geometry, we can write it in the following general form:  this work we introduce a boundary condition, which itself is

written as a perturbative expansion liix) [see Eq.(22)],
n(x)Di(x,h(x))=aib“"‘+f dx’ aibum(x_xl)h(x/) the _standard pertur_bative technique for the solytion of Eq.

(13) is more convenient. The result for the potential up to the

second order in the height function can be written for each

+f dX’f dx' BP(x=x" X' =x") side as

Vi y=h(x))=Va(x,y=h(x)). (24)

ith Egs.(13), (18) and Eqs(19)—(24) the problem is now
completely defined and the response functions can be deter-
mined.

Xh(x")h(x")+ - - . (22) Vi(a,y)=2 Vi (q,00exd (—1)'x; 4y], (25)

This equations describes the dielectric displacenagrthe
boundary as aonlinearandnonlocalresponse of the regular with
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bulk

~ 0'|
vi<°>(q,0)=¢6_—sz5(q)+ci, with ¢;=0, c,=AV,
iR (26)
. 1 . .
VP (,00= ——[ oM k= a)Ih(),  (27)
€iKiq
dk
(2) - A A F
RICRY —eiKi,szh(q kh(k)
1 bk 2 (q—k)k( 2 )
X{E(Ti K;j (Zri'k_1)+K—i2 r’k—l
+ o"(k) Ki,k+(q_k)k +BF“'k<q,k>}, (28)
ik

where the upper sign of refers toi=1. Here we have
introduced the lateral Fourier transform of the potential

~ +OC .
Uay= [ de™vny) 29
and the modified Debye length
q2
Kq=kKlg and rq= 1+ - (30
K

This expansion can be stopped at the second order term,

the conditionkh(x) <1 holds. Furthermore, the height func-
tion h(x) must be infinitely differentiable, since otherwise
the series does not converffel]. Far from the interface the

perturbation from the flat geometry is negligible sineg
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wheredS=[1+ %hf(x)]dx is the metric of a weakly modu-
lated surface. The result up to the second order in the height
function is

dk .
le—Q: _(a_ll)ulk_ a_iurf)j ds— hzf Z[ ?”'k(o,k)

B5(0k)19(K), (329

dk .
Q,=Q= (8" +a3" f dS+h? f 5 [B3"(0k)

+B3"(0k)]9(k), (32b)
where we have chosen the charge on side 2 to be positive and
introduced the two-point height-height correlation function
of the interface

. h(—k)h(k)

Gl="— (33)

It is important to note tha(0k) depends onx(k) and .
Therefore, even if the terms linear (x) are averaged out
by integration, they have an influence on the second order
terms and must be taken into account. On the other hand, if
we only take into account the nonlocal linear response of the
dielectric displacement at the surface, we obtain the trivial
result that Q= (02— 05" fd S= (5" + o5 fdS. This
shows that it is crucial to go beyond the linear response of
tifie dielectric displacement.

Ill. ION ADSORPTION AT ONE SIDE
OF THE MEMBRANE

=k, and therefore the higher order terms decay faster than In this section, we will describe the influence of specific

the zeroth order. Care has to be taken, if one useqZS.
for the calculation of the potential gt=h(x), since the ex-

adsorption of cations contained in the electrolyte on side 1 of
the interface. The adsorption of ions gives rise to a diffuse

ponential has to be expanded, in order to be consistent with @harge distribution on the same side of the interface, which,

solution up to second order im

Having the general form of the solution for the potential,

we can calculate the constant8", o' and the response

functionsaP®, " and P, g by satisfying the con-

due to the electroneutrality of the total system, exactly coun-
terbalances the adsorbed charge. However, the electroneu-
trality is only a global condition and as we will see, interest-
ing local behavior can appear, when the interface is

ditions for the dielectric displacement and the potential at th@?€rturbed from the flat geometry. In order to study the be-

interface position. This is done in the Appendix.

havior of our model system as a function of the different

So far we have assumed that the potential of zero charg@drameters like Debye lengths and adsorption potential in
AVpyc is our independent variable, since it enters directlymore detail, we assume that the modulation of the membrane

into the boundary condition. However, it has to be deter-Can be described by a simple deterministic function
mined from the condition that the total interfacial excess

chargeQ on one side of the interface is zero. The total
charge on each side is simply given by the sum of the diffuse

and the adsorbed part of the ionic density

_ ” bulk urf
Ql—defh(x)dyql (x,y)+fd80?l (x,h(x)),
(318

h(x)
Q.= [ ax| " aydocy) + [ dsounoo
(31b

2 . hA(S 1+ S —
h(x)=hcos—x and h(k):M,
Imin 2
(34
where k=27m/l i, and m=0,£1,£2,.... Theintegral

J(dk/27) can then be replaced by the summatiorA)™,,

and we can calculate the response functions very easily for a
given set of parameters. The values we use for the height and
the wavelength of the interface modulation are based on re-
sults from a molecular dynamics simulation of the water-1,2
DCE interface[22]. Liquid-liquid interfaces are commonly
used as models for biological membranes. Note, however,
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17 - - - - - The above explanation for the behavior of the ratio of the
6 PZC as a function ok, is only a “geometrical” argument.
However, in order to explain also the dependence on the
L5 concentration of that side where no adsorption occurs, one
= ‘ has to investigate the origin of the additional potential drop
>§ 14 for the rough interface in more detail. To this end we need to
23 express the PZC as an expansioneim(x), wheree is a
>§ parameter of smallness. Instead of expanding(B6). up to
Z 12 £2h?, it is more convenient to assume that the total charge
L1 Q=0 is the external variable. Then we can formally write
the PZC as an expansion in termsadf
1.0 - . . - -
000 005 010 015 020 025 030 AVpy( Q=0) = £2AVO+ s2AVE),, 37)

x; (A)
) where the term linear igh is zero due to the condition of
FI_G. 1. Ratlp of the PZC for a rough and a flat furface as aEq.(4). If we insert Eq(37) into Eqs.(A2), (A6), and(A12)

gjnndcltj'?n_(f gl r-lll—thTf'lle: er:gt’r::;sroﬁ’ LTE;ZA(; A/’ A‘_l 1: éz Alf we obtain also an expansion of the response functions, which
- . 9 9 eall b= R now are inserted into the expression for the total charge in
not stated otherwise, these parameters are the same for the follow: . .

ing plots. S|_de 2[Eg. (32b)]. C_:ollectlng terms with the same order of
gives the expression for each order of the PZC. The zeroth

that our simple model calculations are only intended to iIIus—Order Is just the PZC for the flat surface, and it is given by

trate the general behavior of the system. « oS AV o)
Since we are in the linear potential regime, the ch ) 171 et Pz
p gime, the chapge BeAVpyc= 1~ =Be : (39
is just proportional to the potential drapV and contains a K1l €1K1
potential independent part due to the adsorption

with a length characterizing the adsorption

AV)=CAV+Q(AV=0), 35 1 +
QAV) Q(AV=0) (35 R @9
where the proportionality consta@=dQ/dAV is just the

differential capacity and the PZC can be easily determinedote that due to the linearization of the Poisson-Boltzmann

from Eq. (328 or Eq.(32b) by the relation equation the expression faxV{9. is only valid for xi\;
<1, since otherwise the high surface charge leads to nonlin-
Q(AV=0) earities in the potential profile. The isotherm in E§8) has
AVpyze=— ———— (36)  the form of a Langmuir isotherm; however, this form is only

¢ obtained in the linear Poisson-Boltzmann regime, since in

) _the nonlinear regime the expression fof"" in Eq. (A17)

At this value the of the PZC the total charge of the system isy,q the resulting isotherm is much more complicated.
zero up to the second order r(x). Note that both the ca- As expected, on the level of the mean-field approach, the
pacity C and the total charg® contain the information about pzc for a flat interface depends only on the properties of
the real area of surface and hence theﬂ PZC is independent gfye 1. This is no longer true if the interface is perturbed
it. Figure 1 shows the ratio @fVpzc/AVgicas a function of  from a flat geometry. The correction to the PZC due to the
x4 for different values ofk,. This ratio starts from the geo- jnterface modulation can be written as
metrical roughnes8,.,/A for k;,=0 and decreases with in-
creasingk; towards a limiting value of 1. At a first glance @) _ 1, - st L. A\ /(0)
this seems to be surprising, but the reason is the following: Aszc—%h f ﬂg(k)[ﬁl (0k;AVe70)
In the limit of zero Debye length«; — =) the diffuse part of
the charge is located directly at the interface and compen- — B0 k;AVDY)]
sates the adsorbed part of the charge. Apart from the differ-
ent area the situation is exactly the same as for a flat inter-
face, but since the potential drop across the interface does
not depend on the area, the PZC is independent of the geo-
metrical roughness. In contrast, for infinite Debye lengthwhere Cyy is the total differential capacity of the corre-
(k,—0) the adsorbed charge goes to zero for the flat and theponding flat interface
rough surface, but the ratio of it differs just by the geometri-

1 dAvO) ( 1

1 dk. .
=— h2f— k) B0 k:AVD), (40
Cﬂat 27Tg( )BZ ( PZ ( )

cal roughness. Since the capacity for infinite Debye length is _
the same for the flat and the rough interfdd®,23, the Chiat dQ
geometrical roughness is also reflected in the ratio of the R R R
PZC. This is a very interesting behavior, since it implies thatThe response functiong"*, g5"", and 35" depend on the
from measurement of the PZC for various concentrations thproperties of both sidesee Eqs(A12) and (A26)]. So Eq.
geometrical roughness can be determined in the limit of zer¢40) shows that a perturbation from the planar interface ge-
concentration, if the adsorption parameters are known. ometry leads to an additional potential drop across the inter-

+ .
€1k (1+Kk1N1) €K7 4D
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FIG. 2. Effective total charg®,(AV{Y) induced by the rough-

. . FIG. 3. Induced surface charge and the diffuse counter charge
ening of the membrane as a function sof.

on the same side as a function sef for k;=0.1 A.

face. This is also true, if one considers perturbations fromyaye of«,, since the additional surface charge is now again
other highly symmetric geometrigsphere, cylinder Using  completely balanced by a diffuse charge on the same side
again Eq.(323 one can express the second-order contribu{see Fig. 3. According to Eq.(42) the additional potential
tion to the PZC also through the total charge on side 1 Ca'drop is determined by the ratio of the effective charge and
culated at the PZC for the flat surface the capacity of the flat surface. Sin€,, increases much
©) stronger with increasing, than Ql(AVfDOZ)C), the additional
AVE) Q1(AVpz0) 42) potential drop for a rough surface is the smaller the higher
pzC Chat and the order in Fig. 1 can be explained.
The reason for the coupling between both sides is due to
This is an useful equation, since it relates the additional pothe electrostatic boundary condition E(R0). For highly
tential drop for the rough surface to an effective charge—Symmetric interface geometriéplane, sphere and cylinder
effective, becaus®;(AVpz) is zero—and the capacity for the normal component of the dielectric displacement on side
the flat system. It can be interpreted as follows: An initially 2 is zero at each point of the surface, because the normal
flat interface is kept aA V(9. and hence the adsorbed chargecomponent of the electric field caused by the surface charge
is exactly balanced by the diffuse charge on the same sidéS @t €ach point exactly balanced by the normal component of
Then the interface is roughened, but the potential drop acrodge field due to the diffuse charge distribution. For an arbi-

it is still kept atAV{9.. The roughening leads to an increaserary interface geometry this symmetry is broken and only

of the positive surface charge on side 1, since due to thi1® global condition

greater surface area more cations are adsorbed. The electro-

neutrality condition implies that this additional positive sur- f n(x)Dy(X,y=h(x))dS=Q=0 (43
face charge has to be balanced by a negative diffuse charge.

However, since the response functignintroduces a cou- h i
) ' . ) X olds. Thereforen(x)D,(x) can be nonzero at the interface
pling between the diffuse charges on both sides, the diffus ()Da(x)

h be | d both sid t the i osition. In Fig. 4 we show two examples for the lateral
counter charge can now be located on both sides of the I a0 of the dielectric displacement and the surface

terfaceio) Therefore, the effective charge on side 1lpp,00 pue to the height-height correlation function, which
Q1(AVpz0), and hence also the second-order contribution tqg 5 “second-order contribution, the dielectric displacement
the PZC is always positive or equals zero in some limitingyoes not follow the surface modulation. In the casexof
cases. The effective Cha@%(AV(POz)C) as afunction ok, IS _ o the system corresponds to an ideal metal-solution inter-
shown in Fig. 2. If,=0 the effective charge is of course face with an equipotential line, and therefore the surface
also zero, since no ions are adsorbed. In the limitkef  charge is independent of the surface modulation. However,
— the diffuse charge on side 1 is located at the interfaceggmewnhat surprising, also in the casexgf-0 the variation

In this case, it is most favorable for the system to balance thgf the surface charge is more than two orders of magnitude
induced adsorbed charge completely on the same side aRghaller than the variation of the dielectric displacement.
hence the charg®, (AV{)) is zero. The situation is differ- Hence, the assumption of a modulation-independent surface
ent for a finite Debye length. Now the induced surfacecharge would be a good approximation. Note that this is only
charge can be partly balanced by a diffuse charge on thgue at the PZC. Applying an additional potential drop can
other side, and therefore the induced surface charge is highgfad to variations of the surface charge which are of the same
the higher the concentration on side 2. This can be seen frorder as the variations of the dielectric displacement. A di-
Fig. 3. In addition to the increase of the surface charge, theect consequence of the nonzero dielectric displacement
diffuse charge decreases and this results in an overall im(x)D,(x) is that even at the PZC there is a local diffuse
crease oRQ;(AVY) with increasingsk, (see Fig. 2 How-  charge distribution on that side where no ion adsorption oc-
ever, in the limit ofk,—0 it is not possible to balance a net curs. Furthermore, a part of the PZC falls also off on the side
charge on side 1, and therefd@(AV(Poz)c) is zero for every  without ion adsorption. This means that the diffuse charge
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1.0 ' T T T T T T 100 means that the local potential drop across side 1 at this
08 _ a SN - D) ',_' Iatergl position is larger than the overall potential drqp. Ac-
= R o cordingly, a value below 100 corresponds to a potential drop
06 — D on side 1 which is lower than the overall potential drop. As
o~ 04 [ T o) can be seen, the behavior changes drastically with a change
£ B e R e e 1 of k,. In the limit of k,— the potential drop occurs of
2 L course completely on side 1, similar to an ideal metal-
= 00} solution interface, but for a finite value af, the potential
a ok oscillates. The amplitude of the variation of the potential
: drop is the largest fok;=k,. This local behavior of the
04 potential drop is of great importance, if an ion or electron
06 L . L . L . L . ] transfer reactions across the membrane follows after the ion
0 10 20 30 40 is adsorbed. From the total potential drop across the interface
x(A) one cannot conclude, if the necessary overpotential for the
06 transfer is reached at each position, since at some positions
N ' ' ' ' ' | the potential has the appropriate value, whereas at other po-
05F, b SN D ] sitions it has not. This means that there are preferred posi-
04k S "] tions for the ion or electron transfer. The average potential
: drop across side 1 is then simple given by the integration
w; 03 over x. For k,— the potential drop occurs completely on
o 02 side 1, whereas fok,— 0 about 94% of it falls off on side 1
; ol | and the remaining 6% falls off on side 2. Although the av-
g 1 erage potential drop on side 2 is not large, the local potential
0.0 drop can be about 14%.
-0.1
02 - . | . | . | . IV. THE STABILITY OF A MEMBRANE WITH SPECIFIC
o 10 20 30 20 ADSORBTION
x &) It is of fundamental interest to understand the electrostatic

é:ontributions to the elastic bending constants of a membrane,

FIG. 4. Dielectric displacement and surface charge at the PZ, o 4o getermine the stability of the interface. Phenom-
for a rough interface with cation adsorption on side 1 as a function

of the lateral position. The parameters are=0.05 A L, xp—so0 enologically the total free energy of a two-dimensional
(@ and k,—0 (b) modulated surface can be written [2¢,4]

distribution on side 2 makes no net contribution to the Feur= yoJ dS+2kcf dS(H—cO)2+~kJ dSK, (44
charge, but a net contribution to the potential drop. There-

fore, the physical situation differs fundamentally from thatWhereco is the spontaneous curvature akdhe Gaussian
for interfaces with highly symmetric geometries.

Locally the potential at the surface can be very differentbendlng modulus. The mean curvatiteand the Gaussian

and it depends strongly on the concentration of side 2. ThigurvatureK are given by[4]

is shown in Fig. 5, where we have plotted the potential dis- Vh(x,y)
tribution at the interfacé/(x,h(x)), which is also the local H=div Y ) (45
potential drop across side [see Eq.(25)]. A value above 2J1+[Vh(x,y)]?
T T T h h _h2
105 _ xxlyy ™ Txy (46)

L [Vhooy) 12

—_
(=l
(=]

and the metrid S is

dS=dxdyy1+[Vh(x,y)]%. (47)

As before, we confine ourselves here to a weakly one-
dimensional modulation of an interface with zero spontane-
ous curvature. In this case the curvature free energy simpli-
fies to

=]
N

VEOh(x)) /aV,,,

O
(=)

85k

0 10 20 30 40
x (@A) Fsur= VOJ dx

FIG. 5. Lateral distribution of the potential at the interface, . .
which is equal to the potential drop across side 1, normalized by the The easiest way to calculate the electrostatic free energy
overall potential drop\Vp,c with k;=0.05 AL, of our system is to start with the Lippmann equation

1 2
1+ EhX(X)

1
+ Ekcf dxh2,(x). (48)
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( 3y ) Q whereM is defined in the Appendix and
MM

(9(AV) T Areal. (49)

AV , ,
®(AV)=I o(AV )d(AV). (57)
Integration on both sides leads to the expression 0

The pure electrostatic contributiok® to the bending
modulus is always positive. This means that a diffuse layer
which is not influenced by a surface chai@er example, if
Here, y, is the surface tension in the absence of a potentiabne applies an external potential drop across the interface
drop, andAF is the change in free energy due to the forma-leads always to a stabilization of the membrane. The precise
tion of the diffuse double layers. The interfacial excessvalue ofk® depends on the combination of the Debye lengths
chargeQ can be expressed through E(329 or (32b). This  given in the parentheses of E§3), which can vary between
is a closed expression for the electrostatic free energy of th#.5 for k;=k, or 1 for k1> k5, Or k1 <<k>.
modulated interface in terms of the height-height correlation In contrast to the pure electrostatic contributik, the
function, which is valid for every value of the Debye lengths. contribution arising from the adsorbed charge can also be
However, our aim here is to compare it only to the curvaturenegative. This is an important result, since it means that due
free energy of Eq(48), where the bending modulus is inde- to the adsorption the membrane can be destabilized. Note
pendent of the wavelength. that in our model this stems only from the electrostatic con-

If the height-height correlation function has a smallesttributions of the adsorbate and not from the nonelectrostatic
correlation lengtH ,, and the conditiong; ;=1 holds, we effects of the ions themselves. The contributigfis due to
can expand the terms of the response functions which conhe response of the dielectric displacement to the modulation
tain the quantityr; , up to (/k;)* and write the free energy of the interface in the presence of a modulation-independent
[Eq. (50)] in the case of equal dielectric constants as surface charge. If the inverse Debye length on the side where
no adsorption occurs is higher than on the side with adsorb-
ing ions, this contribution is positive. It vanishes for equal
Debye lengths and becomes negativedpr «,. This shows
1 that the usual assumption of equal Debye lengths on both

el ad, pad, a 2 sides of the membrane describes only a very special situa-
* E(k ke k30>J dxPo (), 6D tion, which is rarely observed in a real );ystem)./ If r?he surface
charge itself can also respond to the perturbation from the
where the contribution to the surface tension is flat interface geometry, one obtains two additional contribu-
tions to the bending modulus. The direct second-order re-
(52  sponse of the surface charge leadk3®, andk3®is due to
the response of the dielectric displacement in the presence of
S ] ) _a modulation-dependant surface charge.
The contributions to the elastic bending modulus are given Tpe bending modulus at the PZC of the interface is ob-
by tained, if one calculates it atV=AV{)., since the terms
2( ) proportional to the bending modulus give already a second-

AV
Preal v 70>=AF=—fO QAVHAAVY). (50

1
F:(70+700rr)f dx l+§h)2<(X))

1
Yeorr— — E €

K1K2

(AV)2+ 03U (AV)

K1t Ko

order contribution to the free energy. The pure electrostatic
contribution is shown in Fig. @) for different values of the
adsorption potentiali; . This contribution is the higher the
higher x; and the more attractive the adsorption, because
both parameters increase the potential drop and hence the
diffuse charge. The total contribution frok# is shown in
(Ké_’é) Fig. 6b). This contribution becomes negative in the region

el_ :E 2
k=ks(AV) = Ze(AV)

3( 1 1)2

2 2
K1 K2

3 —

K1K2
-2

: (53

K1+ Ko

_105"Av)

kad_
4 (k1+Ky)?

a (54) K1~ K. The precise intersection value with=0 depends

also onu; . The different contributions t&3¢ are shown in
Fig. 7. The dominating part k3%, the contributiong2® and
KiKs  KiNp k3 are much smaller, apart from the range whege= k.
' This shows again, as expected from Fig. 4, that the main
(55) effect is the response of the dielectric displacement in the
presence of a surface charge and not the response of the
I surface charge itself. Therefore a modulation independent
n surface charge would be a good approximation. Figure 8
K% K% shows the ratio of the total contribution to bending modulus
and the pure electrostatic contribution as a function<pf
K1k, M-—1 For very low concentrations of the adsorbing ions the bend-
(k1+Kkp)2 M ' ing modulu_s is pos_itiv_e and can be even greater tha_n the_ pure
1rne electrostatic contribution, but for higher concentrations it is
(56) lower than the pure electrostatic contribution and becomes

K1K2

1{02av) 03 av)
- -

ad_ _
K1 K2

N

(k1+K2)2 M

1

Kdd= — 5

. 07 AV) + 05" AV)

K1K2
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[ T T T T T T ] FIG. 8. Ratio of the total electrostatic contribution to the bend-
0,00 |eotimms ing modulusk®+ k3 and the pure electrostatic contributif.
001 L i can be reached. Note that due to the coupling between both
_ ! 1 sides the bending modulus is not a universal function of
5 002 | . K1 min -
é - - 1 Finally, we consider the special case of a modulation-
5 003 - Teel . independent surface charge ang= k,= . In this case the
. I E: 55 KT e Tl only contribution to the bending modulus k§', which we
004 TTTTHES . i
[ u=-30KT ] can write as
0.05 | ) 1 ) 1 ) ] . 7 3 (a'?_urf)2
0 1 2 3 4 kel=— . (59
Kl /27

This result is three times greater than that obtained in Refs.
[12-14 for a transparent membrane with an arbitrary sur-
face. The value fok, found in Refs.[12-14 is in accor-
dance with the bending modulus for highly symmetric inter-
face geometrief7—9]. The difference to our result is due to
the nonlocal response of the dielectric displacement to a per-
negative for high concentrations. This means that a memwurbation from a flat surface, which has not been taken into
brane that specifically adsorbs one kind of ions is destabiaccount in Refs[12—14. However, the response of the di-
lized due to the electrostatic contribution of the adsorbealectric displacement is crucial, whenever the interface ge-
charge to the bending modulus, if the bulk concentration Obmetry deviates from a highly symmetric ofigane, sphere,
the adsorbed ion exceeds a certain value. With increasingr cylinden, since then neither the normal component of the
strength of the adsorption potentiaj the destabilization is  dielectric displacement nor the potential at the interface po-
shifted to lower concentrations. The expression for the cursition can be fixed. In contrast, it is interesting to note that
vature free energyEq. (51)] is only valid for «;l ,,/2m>1,  our value is the same as found in REf2] in the case of an
but for largel i, and largex, the region where the bending electrically insulatinglopaque¢ membrane.

modulus is greater than the pure electrostatic contribkfon

FIG. 6. (a) Pure electrostatic contribution to the bending modu-
lus k®, (b) contribution of the adsorbed charge to the bending
modulus. The parameters for this and the following plots =&ye
=0.1 Alandl=50 A.

V. CONCLUSION

0oL ' ' ' In this work, we studied the electrostatic properties of a
modulated membrane, which adsorbs one sort of ions on one
0.00 sz side of the interface. The investigation was based on a model
Hamiltonian, which consists of a bulk part and a singular
001 part describing the adsorbed layer. Within the mean-field
E theory the minimization of the bulk part leads to the usual
2 o0} Boltzmann equations for the ionic densities, whereas the
EY minimization of the singular part leads to an adsorption iso-
003l therm. Using the Poisson equation and the linearized Boltz-
mann equation we derived a solution for the two-
dimensional charge profiles, which allows us to study the
0045 ) 5 3 4 equilibrium between the diffuse and the adsorbed charge.

/2n The result of this calculation will strongly depend on the
applied boundary condition. We investigated the case of an
FIG. 7. Different contributions t&?3 electrically transparent membrane. In this case both sides of
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the interface are coupled and the dielectric displacement atuced by the linearization of the Poisson-Boltzmann equa-
the interface position can respond to the perturbation from &on. This limits our approach to a small potential of zero
flat geometry. This was accounted for by writing it as a non-charge and hence to a parameter range, wkekg is not
local and nonlinear response to the interface modulatiomnuch greater than flsee Eq.(38)], since otherwise the ad-
function. sorption leads to nonlinearities in the potential profile near
We have shown that the interface modulation leads to #he interface. Due to this linearization also the electrostatic
higher potential of zero charge compared to the flat interfacegontribution to the bending modulus is quite small compared
In the limit of zero concentration on that side where the iong© €xperimental values of the total bending moduek In
are adsorbed, the ratio of the potential of zero charge for thi/ture work, it will therefore be necessary to extend this
rough and the flat surface is just given by the geometrical"@d€! to the nonlinear Poisson-Boltzmann regime.
roughness, whereas in the limit of infinite concentration the
potential of zero charge is the same as for the flat surface. ACKNOWLEDGMENT

However, for finite concentrations it depends on the interplay  p. gratefully acknowledges financial support from the

of the Debye lengths of both sides of the membrane, Si”CEuropean Union in the framework of the TMR program.
the second-order response function of the dielectric displace-

ment introduces a coupling between the two diffuse layers. APPENDIX: THE RESPONSE FUNCTIONS
The origin of this coupling lies in the boundary condition :

[Eq. ( 20)]. Due to the perturbation from a highly symmetric  \ne can calculate the constamté’“"‘, gisun‘ and the re-

interface geometry the normal component of the dielectricSponse functiong® 59 and ﬁpulk IB_Surf by satisfying
| ! I 1 ! I

displacement on that side where no adsorption occurs has ngfe congitions for the dielectric displacement and the poten-

to be zero at each_point of the inFerf_ace_. This leads fco dal at the interface. From Eq$20) and (24) we get after
comphcated local diffuse charg(_a distribution on t_hat ,S'de’some tedious algebra for each order of the perturbative ex-
which averages to zero, but which makes a contribution t(bansion a set of two equations

the overall potential drop across the interface. Although glo-
bally the main part of the potential drop falls off on that side,
where the adsorption occurs, the local variation can be quite ( 1 -1 )(Utlnulk) (o_surf)

for zeroth-order terms

large, and at some position the potential drop across this side
can be even higher than the overall potential drop. This is
important for ion and electron transfer reactions across the .
interface, which follow after the ion has adsorbed, since only"d the solution
at some positions the potential conditions for a transfer will
be matched. > oy
For the stability of membranes it is of crucial importance bulk_ i
to know the electrostatic contribution to the elastic bending 717 =Coc| AVH €60 |’ (A2a)
modulus of the membrane. We calculated the appropriate
contribution and have shown that the value strongly depends surf
on the ionic concentrations on both sides of the interface. If Z g
the Debye lengths are equal for both sides, the electrostatic o9Wk=Cgcl AV-
contribution to the bending modulus is always positive, in- €1K1
dependent of the amount of adsorbed charge. However, if the.
Debye length of that side where the adsorption occurs ig\”th
larger than on the side without adsorption, the electrostatic
contribution can become negative and thus leads to a desta- CGc:(
bilization of the flat interface. Our results differ from previ-
ous one$12-14, since we took into account the response of
the dielectric displacement to the perturbation from a flat
geometry. Furthermore, we treated the case of different De- ~ bulk
bye lengths on both sides of the membrane and showed that 1 -1 ap (q)
the condition of equal Debye lengths on both sides of the leikiq Uerkag)\ ad'™(q)
interface is a very special situation, which is hardly met in a

Al
l/GlKl 1/€2K2 O'lz)u"( AV ( )

(A2Db)

_|_
€1K1 €2K2

1 1 )1
. (A3)

For first-order terms

- &surf(q))
_(AbU|k(q) ! (A4)

real system. with
A simple model for membranes is an interface between
two immiscible electrolyte solutions. If we calculate the ca- pulk /1 oulk
pacity for such systems within our theofg5], the agree- APUK(q) = 6—2<;— )— -, (T_l)’ (A5)
a a

ment with experimental resul{5,2€ is very good. How-

ever, we are not aware of systematic measurements of the 4 the solution
potential of zero charge, which allow a comparison with the

findings of this work. A detailed discussion of the influence .
of specific adsorption at liquid-liquid interfaces will be given 2 aisurf a)

elsewherd 23]. ?Kg)=C P A — (ABa)
The major drawback of our model is the limitation intro- 1 (D= Coca d q
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> o)
~ bulk, 4\ — bulkg yy —
ay (9)=Cgcq| A(Q) eikin ., (ABb)
with
S
cc.a €1K1q €2K2q '

For second-order terms

( 1 -1 ) B5"(a,k) (Ezsuﬁ(q,k))
1/€1K1’q 1/€2K2]q Zggu'k(q'k) N BbUIK(q,k)
(A8)
with
1 gbuk 1 oy,
B k)= 5 ———11(aK)+ 5 ———15(a,K)
&bulk(k) &bulk(k
=ik - = —f5ak),
(A9)
and
1 -kk( 2
fi(qk)=1-— (Zri,k_1)+(q 2) (_——1) :
I’l,q K; r|,k
(A10)
1 —k)k
fi"(q,k)zl——lri’kJr(qz ) ] (A11)
Fi,q KiTik
and the solution
2 BMak)
~ bulk _ bulk
B1 (9,k)=Cgcq| B*™(q,k)+ e2k2q )
(A123)
> BMa.k)
~ bulk _ bulk _ !
2 (9,k)=Cgcq| B*™0q,k) eikig
(A12b)

Inserting Eqs(A2), (A6), and(A12) into Eq.(25), and per-

O. PECINA AND J. P. BADIALI

For zeroth-order terms

PRE 60

1+ X610 X1K1N Uiurf C1—CgcAVkiNg
X2K2)\2 1+X2K2)\2 Ugurf B CZ+CGCAVK2)\2 ,
(A13)
with
€Ki
Xj=——, (A14)
€1K1 T €xK>p
L e e B
Ni=g(LiTe i Lie ), (A15)
1 ta—BUT | —a—Bu
ci=5(epgiLie " —Lie ™), (A16)
and the solution
surf 1
o IM{01(1+X2K2)\2)_X1K17\1C2
_CGCAVKl)\l(l_l_KZ)\Z)}’ (Al?a)
surf 1
P ZM{CZ(1+X1K1)\1)_X2K2)\201
+CecAVK2)\2(1+ Kl)\l)}, (Al?b)
with
M:1+X1K1)\1+X2K2)\2- (A18)
For first-order terms
1+X1'qK1)\1 Xl,qu)\l ) 2!?_urf(q)
Xogkohy  1+XaqKaN2) | a5M(q)
—X1,qk1MAM(q)
:( i surf, ’ (Alg)
—XzqK2N2A(Q)
with
€Ki
Xi q= (A20)

ElKl,q+ 62K2’q

AS(q) = iy (1—1 1)+ 08 kp(1—T,q) (A21)

forming the back transformation into real space, the two diand the solution
mensional potential profile is determined in terms of the so-

lution parameters; andk; , the potential dro@\V across the
interface, the height functioh(x) and the surface charge
response functionss""" o5 and %" which depend them-

selves on the potential at the boundary.
According to Eq.(18) the adsorbed charge densiy the
interface depends on the diffuse charge deraitihe inter-

Asurf(q)
My

~surfy o\ _
a3"(q)=—XgqK1N1

. Asurf(q)
a3"(q)= _Xz,qK27\2—M ,
q

face, which has also to be calculated from a perturbative,;,

expansion irh(x) [15]. If one compares this expansion with
Eqg. (23) and uses Eqs(A2)—(Al12), one obtains for each

Mq: 1+X1’qK1)\1+X2’qK2)\2 .

order of the perturbative expansion again a set of two equa-

tions

For second-order terms

(A22a)

(A22b)

(A23)



PRE 60 ELECTROSTATICS OF A MODULATED MEMBRANE WITH . .. 4443

1+XigriNy Xygkihg )(,éiurf(q’k) and the solution
Xagkoha  LH+XoqkoNa) \ BSU(q,k B*q.k
; el Ak Bk = —xagahi g (A26a
—Xl,qu)\lBsurf(q!k) !
| =Xpqk2n2B%"(q,k) (A2 B*"(q.k)
surf !
K) = = Xp qkphy A26b
with A 2aftentz Mq ( )

If we now substitute Eq9A17), (A22), and(A26) into Eq.
(25) and perform the back transformation into real space, the
two dimensional potential profile is completely determined

1
B2(q,k) == 5[0 kir1f7(a.k) = 03" Br 24 5(0.K) ]

— a""(K) ka1 F5(9,K) in terms of the solution paramete¢s and «;, the potential
AL drop AV across the interface, the external adsorption param-
(K) kar 24f2(0,K), (A25)  etersu®, L™ and the height functioh(x).
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